BTech Project - HazApp

The Geospatial Hazard Management System

Rowan Carmichael
University of Auckland
June 2015

Abstract

This paper will be following my progress as a fourth year BTech student working with the software
development team of Opus International Consultants Limited to solve a company-wide problem of
on-site hazard reporting and management. The idea is a web-based application for desktop, mobile
and tablets named HazApp, which will function as a geospatial hazard management system. The
most fundamental challenge of this project is how will | map out, plan, develop, and evaluate an
entire hazard management application based purely on the idea of a single problem.

Everything from the highest level of planning for the problem, to the lowest level programming will
be documented, as well as research and recommendations for the technologies | see best fit for any
design problems that arise, and any testing that has been to help us complete this project to the
highest of quality. This report will also cover the results of a usability study as well as several
heuristic evaluations on the application’s overall usability.

Contents

Y o1y o - Lot T PPV PPPTOPRTORRIOt i
T (0] <L PPPPPPPPRPPPPPRt v
L 11T TP TSP TSP PRUPRRPRPR vii
ACKNOWIBAZEMENTS.eii it e e et e e e e st a e e e eeata e e e santaeeesstaeeesstaeessstaeeesnssaeeesnes viii
O oY [=Totf [d o Yo [T o1 4 T o PPN ix
00 R I TS @ o Yo - 1Y PRSPPI ix
O I o Tl o o] o] 1=T o o T TP PP UUPTPPROTOUSPPRRIN ix
IR o o T [=Tot f o Y- | PPNt ix
1.4 REIAEEA WOTK. ettt ettt e b e bt sae e st e et e bt et e s b e saeesanesaneeane X

B 0T Ve LT 1YY LSRR X

B2 [=To] o o] (o = =PSRRI Xi
2.1 Programming LANGUAEE ...cocuueiiiiiieiee ettt ettt e e e sttt e e e e e s bbbe e e e e e e s s anbebaeeeessesaannraeaeeas Xi

N LYol 1Y To] o 11 L1 2 o o PR Xi

N LYl B LT (G oY o Y IO PR Xi
L] o 1Y o o USRS Xii

[1o Y YT - T J PR Xii

(D L=Toi] o] o T PRSPPI Xii

2.2 Database ManagemeNnt LangGUAZE.ccuuuiiiriiiieeiiieee sttt e sstte e e siree e ssae e e sseaeeessasaeesssseeessnnaees Xii
SQL ettt e a e s a e s a e s b et e e s b e e e e senra e e e snee Xiii
NOSQIL. ettt st s s e e s s e s s e e e s s e Xiii

2.3 JavaSCript FramMEWOIKS.ccuiieieciieee ettt e et e e e et e e e e tae e e sesaeeesesteeeeensseeesannsaees Xiv
KMOCKOUL ettt ettt e st s et esa b e e s bt e e s ab e e sabeesanbeesabeesabeeesabeesaneeenaneas xiv

F AN oY ={] - PP Xiv
BaACKDONE. ..ttt ettt b e e e hte e sbe e e be e e abeesneeenaneas xiv
LAWNCRNAIT 1.ttt ettt e b e sh e she e sttt e bt e beeehe e et e et e e reenreens XV

(e Yor=] I Slo] =Y -{ TR XV

2.4 Mobile Web APP FrameEWOTIKScceicuiiiiiiiiiieeciiie e ettt e et e e eetre e e seraeeesetaeeesessseessnsseeesansseeens XV
@ UL a1V, o o111 XV

1o o o PO PR PR XVi

2 Yo o] £ { -] o JE O PP P PPP TSP PUPPP XVi

P R AV (] (LT A I [= {UE= Y= TSR XVi
LS ittt e a e s s s e s a e s s a e e s s arae s XVii

2.6 MappPIiNg APl .. Xvii
ATCGIS et a e s eba e XVii

B b o [T oY= [0 o I DT T [P xviii
N D Fo -] o 1= Y 1T = o SRR xviii
3.2 USEr INtErface DESIZNuuviiiiiiiiee ettt ettt e st e st e e s e s st e e s s sabe e e s ssabeeeeensbeeesenareneeenanees Xix
I B e oY= ST o 1= Yo PR PPPR XX
 FIPST PrOTOTYPE ettt e e e e e sttt e e e e e e s e abbt e e e e e e e s e annraeeeeeeesennnnne XXii
4.1 Accessing Database USING PHP ...ttt ettt e e s eta e e e s eata e e e searaeeeeanes XXii
4.2 Creating the Mobile Side USINg HTIVILSccciiiiiiiiie ettt e eitne e sarne e e searaee e XXiii
F ol G Y/ =T o] o1 1o V=P PPPRPRPRRt XXiii
HTIMLS FOIM Creationccii ettt et e s e s e e s e e s e snnee e e eenneneeeeaneees XXV

Y= TeleT g Ve l DLV =] FoT o 0 o Y=Y oY fl od o T Y USRS XxXviii
oI 2 LYo o] [Tor= 1 4[] o F OSSPt XXviii
1Y =T VA= PSPt XXiX

[a} oY g0 aF=Yd o a I DIT-] (o} -V I RSP XXX
HAZAId FOMM.iiiiiiiiieee ettt ettt et s e e ab e e st e e bt e e sabeesbbeesabeesabeeenbeesabeesnnee XXXi
5.2 User Interface IMpProvemMENTScuueiiiciiieecciiee e ceitee st ee e sttt e s sstee e s ssabae e s ssabee e e ssntaeeesensaeeesnnes XXXii
IMIAP VIBW ittt ettt e e s e sttt e e e e s s st et e e e e s s saasabbbaaeeeeeesaassbaaaaeesssansnsssanaeeas XXXii
INFOrMation DIGlOGUEcoii i e e e e e etre e e e e ate e e e eate e e e eateeeeenneeas XXXii
HAZAIA FOMM ..ttt ettt e bt e saee st e et e e bt e bt e smeeemteemeeenbeenbeens XXXiii
V7N DY c [o g =T oL ol o - 1Y Y SRR XXXiV
(S N @loTad=Totd[a4 d o [N CT=To] loToF1 d o] s 14'e o 1 o SN RP XXXiV
6.2 Mobile Specific FUNCLIONAIItIES ..iocuvveei et sarae e e XXXV
6.3 Data Analysis UsSing HIghCHhArtsccoociiiii it st e e st e e s e e e XXXVi
VLY] o 1L Y2 USRS XXXiX
7.1 NI€ISEN"S HEUIISTICS ...eeueeeiiieieeiee ettt sttt et be e st b et e sbeesaeesanesane e XXXiX
Match between system and real WOrldcooouiiiiiiiie e XXXiX
User control and fre@aOm......cc.coiiiiiiieieeeee e XXXiX
Consistency and STANAAIASvviiiiciiee e e e e e e e e e re e e e ee e e e eraeas x|

[g o gl o LNV =T o1 o PP UR x|
Recognition rather than reCallo e e e e e e e areee e x|
Aesthetics and MiNiMalistic dESIZNvviiiciiie et serae e e e xl
Help users recognize, diagnose, and recover from EIrorsS........uivvveeeiecieeeeniieeeerreee e e sreee e x|

7.2 Shneiderman’s GOIAEN RUIESouuueeiiieeeeeee et e e e e et e e s e e e e e e b e s e e eeesaees x|

Offer informative feeADACK........ooiiiie e x|
Permit easy reversal Of aCtIONSoii i e e n xli
Support internal 1ocus of CONTIOL........oii i e e xli
Reduce short-term memory 108cuviie i et e e e e s etba e e e araee s xli

7.3 USEr ACCEPTANCE TOST...eiiiiiiiiiiiiiiiiitiiittttetteeeeeeeteeeeeeeeeeeeee e eee e eeeeeeeeaeeeeeeeeeeeeeeeesaeenenenenenenenenenennnennns xli

T Y=Tol U1 41 A A OSSOSO PP TP PPPUPOPPTTIN xlii
D LY -] o YT ol U 1 A PP xlii
A U LYY gl o =1 o TSP xliii
0. PITOIMMANCE. ... ettt et b e sttt s bbb e bt e s bt e sae e et e et e e s b e e she e saeesare e b e e beenes xliv
N A R [o VT € - o [1o V-SSP xliv
9.2 YSIOW CaChe StatistiCS .ececuererrieeiieeiiee ettt ettt ettt et e sb e s bt e e sabe e sbe e e snteesabeeenaneas xlv
O e g T o] =] =T I 1o - | KSR xlvii
12, LESSONS LEAINEMAciiiiiieeieetee ittt ettt ettt st st et b bt e s bt e s bt e s st e et e et e e sb e e saeesanesabeebe e beenes xlviii
L2, FULUIE WOTK ettt sttt sttt et b e s be e s be e sme e e st e et e ebeesbeesanesanenas xlix
S T 0o Yo ol [To 11 oY= I g ToT U= o} £ SRR I
21T o1 Lo =4 =T o] o1 PPN Iv

Figures

Figure 1 - FIrSt ERD Araft....uueeiie ettt e e ctree e e e e e e e e re e e e e e e e s e e nnnraaeeeaeeeennnnns xviii
FIBUIE 2 - FIFST ERD c.ciiiiiiiiiiiiiiiiieiiieietetete ettt ettt et e e eeee e e e et e e e ee eaeseeeeeaenesenannnnns Xix
Figure 3 - Mobile user interface PrototyPe [1] ..cceeccciiiee ettt e e eetre e e e e aree e e eanes XX
Figure 4 - Connecting to the PostgreSQL database using PHPoeveiiiiiicciiieee e XXiii
Figure 5 - A Simple SELECT PHP QUEIY ..eeiiieiiiieciiiee ettt et e s et e e e e ivr e s s aae e s saaae e e sasaeeesnsaaeean XXili
Figure 6 - Basic PHP €rror Nandling.......cccoe oottt e ettt e e e e e e nnae e e e e e e e e e nnnnes XXiii
Figure 7 - Basic ArcGIS JavaSCript COUE...cuiiiiiiiiiee ettt e e e e s e e e nrrr e e e e e e e eenannnes XXiv
Figure 8 - Gray view / Figure 9 - Hybrid VIEW.........cocuiiiiiiiieieciecctee ettt XXiv
Figure 10 - TOPO VieW / FIGUIrE 11 - STrEELS VIEW ...ccuviiviereereeiteeiteesteeereeveenteeteesteesteesanesaneereenseenseens XXV
Figure 12 - Knockout NUMEriC DINAINGccocuiiiiiiiiee ettt e e e e e XXVi
Figure 13 - Custom Knockout binding for date pickerccueeeviiiiiiciiie e XXVii
Figure 14 - Date picker USEr iNterface......ouvuiiiiiiiiiic e e XXVii
FIgUre 15 - M VIEW VEISION L...ciiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeseeeseseseeesesreeseseeeeeeeseseseereraerererrerrrerermr XXX
Figure 16 - Hazard dialogue VEIrSION L......coccuiiiiiiiiieecciiee e ecitee sttt ee e st e e s sere e e s saaa e e e s sasaeeesnnaeeesnnsneeean XXX
Figure 17 - Hazard fOrm VEISION L....couiiiiiciiiecciiee et ee sttt e st e e e s e e e s sata e e e saaa e e e snsaeeesnnneeas XXXi
FIBUre 18 - M VIEW VEISION 2...ciiiiiiiiiiiiiiiteeieieeeeeeeeeeeeeeeeeseeeseeeseteeeeeeeseeeeeeseesesmeeseeemeee. XXXili
Figure 19 - Hazard INformation VEISION 2cooiuiiiiiiiiiee et eree s e e e svae e e vaea e e XXXiii
Figure 20 - Hazard FOIM VEISION 2..c.iuuuiiiiiiiiieeciieeesitee st e s stte e s ivee e s sivae e s sssbaee s ssnbaeesennnaaesssanes XXXiV
Figure 21 - Map view with location bookmark featurecceeecueeeicciiii e, XXXV
Figure 22 - Adding photo attachment via Smartphonecccoeciii e e XXXVi

Figure 23 - Highcharts analysis of hazard type distribution..........ccccveeieiiiiiciii e, XXXVi

Figure 24 - Number of hazards reported per day via line chartcccccoeeeeeieccee e, XXXVii
Figure 25 - Information popup for correctly submitted form.........cccovviiiiiiiiicie e, xli
Figure 26 - Information popup for submitting an incorrect file to the database.........ccccccovveeeecuienenns xli
Figure 27 - htaccess 108iN SYSteM PromMIPLcciccuiiii it e et e e e e e e s e bae e e s sbeeeeens xliii
Figure 28 - html code before login verificationcccccoiviiii i xliv
Figure 29 - html code after 10gin VerifiCationceei e xliv
Figure 30 - YSIOW Performance REVIEWccoociiiiiiciiiii et ettt e ettt e et e e e e tae e e e ebe e e e eebaeeeeearaeeaenns xlv
Figure 31 - YSIOW StatiStiCs OVEIVIEW ...cciiciiiiiiiiieee ettt sttt e et e e e etae e e s ebae e e s ebaeeessnsaeeeeans xlvi

vi

Tables

Table 1 — Progress plan for first release

Vii

Acknowledgements

A special thanks to Mano for giving me this wonderful opportunity. Also a massive thank you to the
Opus team: Kodie Wixon, Taylor Carnell, Sulo Shanmuganathan, Roquito Lim and Mitchel Bennett,
who have all made this process as equally enjoyable as it is fulfilling.

Dr. Sathiamoorthy Manoharan

Academic Supervisor
Senior Lecturer Computer Science - University of Auckland

Kodie Wixon

Industry Manager
Senior Software Developer & Software Team Manager - Opus International Consultants

Taylor Carnell

Industry Supervisor
Geospacial Software Analyst - Opus International Consultants

viii

Chapter 1 - Planning

1. Project Introduction

The HazApp system is a proposed geospatial hazard management system to be used by Opus
employees and contractors. It will consist of both a mobile app for on-site hazard reporting and real-
time hazard alerts, and a desktop app for statistical analysis and management of hazards. The
original proposal was an outcome of Opus’ Big Ideas Competition [1] as an improvement to Opus’
current paper-based hazard reporting system.

1.1 The Company

Opus International Consultants Limited is a multi-disciplinary international consultancy company
consisting of over 3,000 engineers, designers, planners, researchers and advisors, situated across 5
countries (New Zealand, Australia, Canada, America, and the United Kingdom). Their work services
include transport asset development, building design, water, and other infrastructure. Because of
the nature of their work fields, many Opus employees and contractors working for Opus are very
often found on work sites (rather than in the office).

Some of Opus’ more recent projects include, but are not limited to, the Newmarket Rail Station
redevelopment, Ngatamariki Geothermal Power Plant construction, the Waikato Expressway, and
the Carterton Events Centre. All of these projects are of massive scale and as such are relatively
prone to on-site hazards. HazApp hope to minimise the time spent towards reporting and managing
on-site hazards so that work can continue on the more important aspects of planning and
construction.

1.2 The Problem

Offering professional consultancy services in asset development and management often requires
Opus employees to be working on-site where if any hazards occur they must be reported and stored
for management, however the current hazard reporting system is a paper-based form (See Appendix
Item 1 for a sample hazard reporting sheet) which is tedious to complete, takes time to be
transferred into a database, and does not offer any advice or alerts to the reporter or anyone else
working on the same site.

As well as having an inefficient paper-based hazard reporting system, each different Opus office
(both nationally and internationally) has a different means of reporting and storing the hazard data.
This lack of connectivity has misaligned Opus’ safety and business practices and is continuing to
promote an absence of interconnectivity within the company.

1.3 Project Goals

HazApp was created to rectify these problems by both moving the hazard reporting away from
paper towards utilisation of smartphones and tablets, and realigning databases to make the best use
of the reported hazard data. Using a mobile map-based hazard reporting not only allows for real-
time hazard reporting and management, it also has room to offer immediate advice and mitigation

devices to best handle reported hazards. Using a desktop management system with a single global
database allows for powerful statistical analysis.

HazApp needs to perform well in areas with and without stable internet connections, it needs to
have adequate security measures to protect Opus’ data, and it needs to be as user friendly as
possible (as it will eventually be offered to users of all different technological abilities).

1.4 Related Work

Due to the practical nature of this project and the fact that it is a relatively original idea it was
difficult to find many sources of related work (especially those of academic nature, such as journal
entries or conferences). However from my research | have come across one application which seems
to be very similar to what we intend on developing ourselves. | believe it is very important while we
are still in the early planning stages of the project to seek out similar projects for analysis on what
they have done, and what we can do better.

ThunderMaps

ThunderMaps [2] is a mobile application used to report and manage workplace risks in real time
much like how HazApp is planning to do. While simply using ThunderMaps to solve our problem may
seem like a decent and quick solution, there are definitely some drawbacks to simply buying vendor
software for such a specific problem. The most important benefit of creating an in-house application
from scratch is that we will have the maximum amount of freedom in terms of design and
development. Instead of having to try to find the “perfect” software for the problem, or trying to
find a “close enough” software and asking the vendor to modify it (which can be very expensive and
time consuming), we can create the application purely based on our needs. This includes getting
input from knowledgeable sources within the company (such as health and safety managers), as well
as getting real users to test the application and give us feedback while we develop. This freedom
also extends to the data itself, by designing and creating an application ourselves we can mould our
database design around current Opus databases. And finally, as HazApp is planned to eventually
extend to all Opus employees worldwide (assuming the deployment within New Zealand is a
success), the scalability and agility to respond to problems is significantly more important. As such it
will be a necessity to have in-house developers that understand and can react to anything that may
damage the effectiveness of HazApp.

The features that ThunderMaps shares with the HazApp idea is location based risk reporting,
utilising “alert areas” which allows users (for example health and safety managers) to monitor a
specifically selected area, automatic alerts to staff when they approach a hazard, and some form of
report generation. However there are some critical differences which separates ThunderMaps and
HazApp, in particular while ThunderMaps does allow for public and private commenting on a
particular hazard, it doesn’t have nearly as much depth in its report generation when compared to
HazApp. [2] The HazApp idea also has a strong focus on generating statistical analysis from all the
information input into the database, this is a crucial aspect which will aid in the improvement of safe
business practices.

2. Technologies

Due to the general complexities and cross-platform nature of the project, HazApp will be heavily
reliant on technologies if it is to be a success. The discussion following will outline key decisions
defining how the project is to be made and how it will function. The discussion and ultimate
decisions will be based on a review of current technologies that are able to fit the required function
specifications. These will range from development languages, technical application program
interfaces (APIs), user interface (Ul) frameworks, and database systems.

| will also note that in many of these cases, decisions will not be made until development starts, and
any decisions that are made here may be subject to change when actual development does
commence.

2.1 Programming Language

Seeing as this project requires both a mobile (smartphone and tablet) and desktop component it is
crucial to decide on a language (or languages) that accommodate the platforms and functionality of
the application. The primary programming languages that | will be considering for this project are;
native app for mobile (consisting of some/all of Android, iOS, and Windows Phone), native
application for desktop computer (likely in either C#.net or Java), a web based application (HTML5)
for both mobile and desktop, or an HTML-built application utilising PhoneGap.

Native Mobile App

Perhaps the most obvious solution for the mobile side of this project, native mobile apps allow for
very powerful functionalities and generally faster speeds for functionalities such as use of GPS
tracking and photo capturing (when compared to web based applications). Another attractive
benefit for developing a native mobile app is the ease of use for either offline work or in areas that
have sporadic network connectivity. This is going to be something that may not be a primary
decision factor now, but will definitely need to be considered for the completion of this project.

One big drawback for both forms of native applications, in comparison to a web application, is that if
the project is ever updated (which will most definitely occur), the native applications will have to be
manually updated. This is not the case for the web application as all of the updates will occur server-
side so whenever a user goes to the web page it will be showing the most updated version. Along
with having to update the application where necessary, both native apps require disk space on the
device being used. While this may not be an issue for a desktop computer, it is something we have
to keep in mind for mobile devices with limited storage space.

Unfortunately another major drawback of creating a native mobile app is that it would likely like
more than one language codebase (as some combination of Android, iOS, and Windows Phone) for
the mobile side alone. Taking into considerations the limitations of time, expertise, and money we
have decided that a native mobile app approach would not suit what we hope to achieve.

Native Desktop App

Similar to native mobile apps, a native desktop application can offer increased speed and
functionality in comparison to a web application. However it also shares the same drawback of
requiring separate code bases for both the mobile and desktop sides. With this in mind it is clear

Xi

that the two options we could take in terms of coding languages are either a native mobile app and a
native desktop app, or a web app for both mobile and desktop.

Web App

The limitations of web applications compared to native mobile and desktop applications somewhat
numerous, however due to the relatively simple functionality of the project, we feel as though a
HTML5 web application using JavaScript would more than suffice the primary needed functionality
of mapping, geolocation tracking, photo/video capturing, and connectivity to a server side database.

As mentioned earlier, having some functionality for offline use or intermittent internet connectivity
needs to be considered. Fortunately there are options utilising HTML5 and JavaScript which allow for
such functionalities. The possible solutions to this problem will be assessed later.

Finally, using a HTML5 web based application will allow for a lot of code sharing between the mobile
and desktop application. This is an incredibly attractive trait of web applications and is a main
contributor to why we have ultimately chosen to develop a web application in HTMLS5, utilising
JavaScript APIs, and a PHP database.

PhoneGap

PhoneGap is a special case that we will be also looking into specifically for the mobile and tablet side
of our project. In terms of development it should be exactly the same as a web application using
HTMLS5, CSS, and JavaScript. However it differs in how it is deployed, instead of being a web based
application PhoneGap would allow for out HTML/CSS/JavaScript codebase to be converted into
native mobile applications for Android, i0S, and Windows Phone. This would eliminate the problem
of having multiple code bases for each different device type and could also allow for better local
storage on the device for offline or poor-connection usage. While in theory this sounds great it may
not be as easy to include such functionalities. [3]

Although this seems like a good middle ground decision it does not come without its own faults. The
most glaring problem that would most likely arise is decreased performance compared to a regular
native application or a web based application. From what has been suggested from some of the
other Opus developers, PhoneGap may not be the best choice if we are interested in having decent
performance speeds from out application. From what | have gathered PhoneGap’s conversion comes
with a cost, and seeing as it is important for our app to function fast enough as to not have a
negative impact on the user’s view of the app, PhoneGap may not be the most obvious choice.

Decision

Due to the very small size of our development team and the large size of the project itself we have
decided that we will be developing using HTML5 for both the desktop and mobile/tablet side of the
application. As mentioned earlier HTML5 comes with more than enough functionalities to
accommodate the project requirements and by chOosing HTML5 we will be able to share a decent
amount of code between the two sides of the application.

2.2 Database Management Language

One of the key inspirations for this project was to connect the entire Opus community through a
global database system, as such the decision for the database management language is very
important to the longevity of the project. As discussed earlier we are going to be creating a HTML5

Xii

based web application and as such we will be using PHP to connect client and server databases. In
terms of database implementations we will be looking into two of the most popular options being a
regular SQL database and a NoSQL database.

SQL

SQL (structured query language) databases have been around for many years, with their first
appearance in 1974 and initial release in 1986 and as such have been the dominating framework for
databases up to present day. The biggest difference between SQL and NoSQL is that SQL databases
are primarily relational databases utilising tables containing data fitted into predefined categories.
While SQL has been around significantly longer than NoSQL it does come with its limitations. The
major limitations to note are scalability and complexity. As SQL uses relational databases scaling the
size of a database is an expensive and difficult task which requires powerful servers. The other major
drawback as compared to NoSQL databases is the complexity of relationships within the database.
SQL requires a network of tables all connected through some means of relationship strings. An
implication of this is that altering the design of the database structure can be very complex and can
downright break your database (especially in the case of deleting data/tables).

One benefit that regular SQL databases have over NoSQL databases is that, for complex queries, SQL
offers standard interfaces aiding in working with such queries. In general SQL databases are best fit
for heavy duty transactional type applications, the reason being is that they offer more stability and
promise atomicity as well as integrity of the data. This is emphasised through SQL’'s ACID properties
(Atomicity, Consistency, Isolation and Durability). The HazApp project will be including some form of
transactions (most likely on the management side of the application) so the benefit of stability and
atomicity will be kept in mind.

Finally the last advantage to note that SQL has over NoSQL is that, as it has been around for so much
longer, SQL offers excellent support for their databases from vendors. Whereas NoSQL largely has to
rely on community support. [4]

NoSQL

NoSQL databases have surged in popularity since their release in 1998. The aim of NoSQL was to
move away from the idea of concrete relational tables for a more flexible framework. NoSQL
databases focus more on key-value pairs, no longer requiring fixed table schemas and relational join
operations. They have traded off the ACID properties for Brewer’s CAP (Consistency, Availability,
Partition tolerance) theorem.

One of the bigger positives NoSQL has over has over regular SQL is that no schema are required.
That is to say data can be inserted into a database without having to define a rigid database schema.
This also allows the format of the data being inserted to be changed at any time without application
disruption, leading to massive application flexibility. In general NoSQL databases process data faster
than relational databases as their data models are more flexible and often simpler. [5]

While both SQL and NoSQL databases have their own differences and benefits, we are yet to make a
decision on what database type we will be implementing. This decision will be made closer to
development start.

Xiii

2.3 JavaScript Frameworks

Selecting appropriate JavaScript frameworks can greatly reduce the need for tedious manual
calculations. Essentially what we are looking for in a JavaScript framework is functionalities which
will aid help with manipulation of the webpage’s data through things such as functions and bindings.
In this case we will not necessarily be settling for a single JavaScript framework, but instead we may
use several in different areas which we see fit. For general JavaScript we will be considering
Knockout.js, Angular.js and Backbone.js. This decision will likely be influenced by how the JavaScript
framework combined with the web app framework. For offline storage functionalities we will be
looking at Lawnchair and Local Forage.

Knockout

While Knockout, AngularlS, and Backbone all offer some of the same very useful functionalities that
regular JavaScript does not naturally support (such as data binding and DOM templating of code into
smaller maintainable pieces), Knockout is different as it is primarily a lightweight data-binding
library. Unlike Angular]S it has explicitly put work towards focusing on unobtrusive code, which
could be important for our project. While at times each of these three frameworks may outperform
the others in terms of performance speed, Knockout has a stronger focus on speed and should offer
better performance than the other two for common tasks that we will be implementing. [6]

Angular

Angular is different to both Knockout and Backbone as it is a full-fledged framework (rather than a
lightweight one). It has be built from testability and as such of this can clear project organisation
more effectively that the other two alternatives. It is the “heaviest” of the three frameworks, and
because of this it can offer more luxury functionalities such as custom elements. It is difficult to say
whether or not these extra functionalities will be of any benefit without having started development
yet. [7]

Backbone

More similar to Knockout, Backbone is a lightweight JavaScript framework and as such in general it
will also perform better that AngularlS in terms of speed. Unfortunately this comes at a cost; while
Backbone excels in simple applications, it may fall behind when dealing with heavy built-in data
interactivity or extensive scaling. As mentioned earlier, it is difficult to tell which of these
frameworks will suit out problem, although in terms of the mobile side of the application we are
going to try and make it as simple as possible so both Knockout and Backbone may have the slight
edge at the moment. It is going to be our job when we start developing to identify and handle the
balancing act between these frameworks. [8]

With all of this in mind | will conclude that all of these frameworks essentially are solving the same
problems. There are small differences between the functionalities and syntax between the three but
ultimately any of these frameworks seem as though they would adequately work for our project.
While this decision is still undecided, it will probably be influenced by more specific problems we
encounter while actually developing. If any one framework can manage a specific problem better
than the others, it will most likely be the one we use, however that will be judged on a case-by-case
basis.

Xiv

Lawnchair

Again Lawnchair and Local Forage share the same roll of maintaining data offline. Although we are
still in a very early stage of planning and offline data management is rather low on our priority list |
still thought it would be beneficial to review two of the most popular options for local HTML5
storage using json.

Lawnchair has been designed with mobile in mind, which is great to hear as the mobile hazard
reporting side of our project is where we will be wanting offline support. It has a few very simple but
powerful functionalities which cover the basis of offline data storage. These include mapping key-
value pairs, saving them to a local “store”, and accessing them later. Unlike Local Forage, Lawnchair
has stopped releasing new builds and has been “finished” as a project. This means that as time goes
on it most likely will fall further and further behind the regularly updated Local Forage. [9]

Local Forage

Mozilla’s Local Forage seems to be a more complete solution to the problem of local storage for
HTMLS. It shares a similar methodology of saving and retrieving data as Lawnchair, but it also offers
built in error handling. This essentially means it is slightly more complex but covers lightly more
functionality than Lawnchair. As mentioned earlier it is continually updated and from what | have
gathered has far more extensive documentation and support. [10]

At this time in our research, offering offline storage functionalities has one of the lowest priorities
and will probably not be mentioned again until we are nearing our final release.

2.4 Mobile Web App Frameworks

The web app frameworks we will be deciding to use will primarily be based on user interface and
ease of use. With this in mind we will only be looking at a select few (although there are a numerous
amount of potential contenders) that we deem most likely to fit our needs. We will consider JQuery
Mobile, lonic Review, and Bootstrap.

JQuery Mobile

JQuery Mobile is a very well know and very popular choice for HTML5/CSS/JavaScript development
for smart phones and tablets. It is a very easy to use framework that does a lot of useful work for
you (especially in terms of automatically generated user interfaces). It is such a popular choice for
smart phones and tablets as it includes a very clever built in scaling system so that you program can
easily be transferable between many different screen sizes. In essence JQuery Mobile is a
minimalistic upgrade to JQuery designed for responsive web pages and platform independent
applications.

Another great benefit of JQuery Mobile is that seeing as it is so simple, it is incredibly easy to extend
further JavaScript libraries. As such it should be able to fit well with any of the JavaScript frameworks
discussed above. As well as working great for mobile devices JQuery Mobile also offers smart designs
and implementations on desktop applications. This may come into our decision making process as it
is important to have coherency between out mobile and desktop application which can be boosted
by having a similar user interface style for both.

The final benefit that JQuery Mobile which is very attractive for our project is the fact that it offers a
lot of mobile-specific function handling such as swipe-events, page transitions and touch-friendly

XV

components. However while it does offer a lot of useful functions it can be have very slow
performance, especially if the application is not designed properly. [11]

lonic

The lonic framework is the most recently created web app framework we will be considering, with
the alpha release in November 2013. Similar to JQuery Mobile, lonic Review primarily focusses on
the user interface, however it differs in the fact that it is built on top of Google’s AngularJS
framework. This pairing is a necessity for lonic to function to its fullest potential so if we were to
choose it we would also have to be working with AngularJs.

Another similarity lonic shares with JQuery Mobile is having a strong focus on responsive web
design, which is a big plus. We will be wanting to have our application provide optimal viewing and
interaction experience, as well as quick and easy navigation, and the ability to function on a wide
variety of devices. By utilising a responsive web design to its maximum potential, we should be able
to share a lot of code between out desktop and mobile applications. [12]

Bootstrap

Bootstrap is a front-end framework which also offers a number of great user interface components
such as dropdowns, breadcrumb navigations, and button groups. Unlike JQuery Mobile, it has not
been designed to primarily focus on mobile applications and as such seems to have the appearance
of a desktop application (even when on a smartphone screen). To fix this, custom code would be
necessary. As it is less dependent of JQuery, it generally will exhibit better performance. [13]

While we will be developing for both mobile and desktop we are yet to decide if we will use any of
these frameworks for both sides of the application or if we will divide our application by using
different frameworks for the two sizes (for example JQuery Mobile for the mobile/tablet side, and
Bootstrap for the desktop side).

2.5 Stylesheet Languages

While not a major priority for the project, utilising an effective stylesheet language that can be
compiled into CSS, can make the CSS code easier to understand and simpler to create. The two big
names in this area that we will be considering are Less and Sass. It should be noted that while we will
be considering both, we may end up not using either and just stick to regular CSS.

Both Less and Sass share a lot of syntax and functionalities, and are essentially attempting to solve
the same problem of decreasing the amount of code needed for stylesheets through added
functionalities. These include but are not limited to:

e Mixins: which allow embedding of properties of a class into other classes, creating a soft of
variable which can be repeatedly used.

e Parametric Mixins: act as functions by allowing passing of parameters

e Nesting: similar to a nesting in a language like Java, cuts down on repetitive code

e Functions and Operators: allows for mathematical equations within your CSS code (for
example taking a colour variable and making it slightly darker by adding to the RGB value)

e Namespaces: which are groups of styles that can be called by references (rather than
requiring several CSS files)

XVi

Less

While both Less and Sass are pre-processors for CSS, Less has been greatly influenced by Sass. This is
very apparent in the shared functionalities of the two. One difference between the two is that Less is
a JavaScript library and is processed client-side. Being a JavaScript library it is incredibly easy to
incorporate into a web based application. All that is needed is two extra lines of code in the HTML
file, one referring to the .less file and one referring the less.js file. [14]

Sass

As stated earlier the one significant difference between Less and Sass is that Sass is not a JavaScript
library, it instead uses Ruby. However it seems as though this is not a big deal at all as if | were to
develop using either of these frameworks | wold have to be learning new syntax anyway. [15]

It seems as though if we do decide to use either of these frameworks it will most likely come down
to personal preference as the differences between the two seem to be minimal. However we will
probably be ignoring these for the start of our development as we will be wanting to only focus on
the most necessary functionalities.

2.6 Mapping API

It is of immense importance to get the mapping technology that will best suit our project. The
primary properties we will need from our mapping APl is an attractive interface, capabilities to
effectively send user input to, and retrieve and map data from a server’s database. We would also
really like to have easy and flexible movement options for the user (in particular moving the map
location and zooming), and a fast overall performance. Although the mapping API ArcGIS has already
been chosen by Opus for this project (as for all mapping-based projects within Opus ArcGIS has been
used) | will still review this APl in hope that | will gain a better understanding on how | will end up
developing with it.

ArcGlS

The ArcGIS engine allows for adding dynamic mapping and geographic information system (GIS)
capabilities to both existing applications and custom built mapping applications. Some very useful
features include creating custom and prebuilt drawing/graphics features, such as points, lines, and
polygons. These graphical features are not just for show, ArcGIS offers powerful manipulation and
geographic operations on these shapes, such as calculating differences, finding intersections, and
even assigning points on a map to database objects. This is exactly the kind of functionality we are
looking for in our HazApp project. As well as the interfacing side of the mapping technology, ArcGIS
also offers network analysis which is another crucial part to the success of our project. All this is very
well documented and there are many demos on their site which will most definitely speed up my
learning process as so far | have had no exposure to ArcGIS. [16]

In terms of the visuals of the mapping, ArcGIS seems to offer an abundance of choices. Again this is a
massive positive as we can customise how the map looks to best represent the data, and maximise
the ease of use for users. | will be reviewing some of the more specific visualisation options later in
the planning phase.

XVii

3. Planning and Design

Now that the majority of decisions have been made on the technologies we will be using to
construct HazApp we now have the opportunity to move onto planning specifics of the project.
Again, seeing as we are at an early stage in development, it is very important to create a sound
foundation before development starts. Our planning and design phase will cover the underlying
database design, a basic user interface design, and an initial plan for our development phase.

It should be noted that while we are still only in the planning and design phase any decisions made
here are subject to change.

3.1 Database Design

The decision has been made for this project to be implemented using a PostgreSQL database [17].
The reason we have chosen to go with a more typical SQL database rather than a NoSQL database is
due to the relational nature of the data we will be storing. The figure below shows our first ERD
(Entity Relationship Diagram) including the fundamental tables, attributes, and relations.

To begin the planning we started with mapping the most important entity in our database: the
Hazards. From this we expanded the database outwards, keeping in mind the relationships that
would follow the new tables. The most important tables that we identified were: Hazards, Projects,
Users, Lookups, Attachments, User_history, and Sync_history. While the Hazards, Projects, and
Users tables are fairly self-explanatory, | will be briefly covering a few of the details of the less

obvious tables. To start, the Lookups table is to help define and categorise specific hazards. Also
closely related to the Hazards table is the Attachments table, this is to be used for linking
photos/videos with reported hazards. And finally, User_history and Sync_history are there to offer
some form of documentation on users and to help synchronising the database (for example in times
of a lack of internet connectivity).

Figure 1 - First ERD draft

As this was our very first draft of the database design there was a lot of room for change. Through
several iterations of reviewing the ERD we finalised the design (as shown below) with several
changes. These include but are not limited to the addition of attribute variables, further defining the

XViii

relationships (as well as the relationship types), and the addition of new relational tables (in this case
the table User_project which is used to resolve the many-to-many relationship between the User
and Project tables).

Project

User_project Hazard_project

P Attacment

Hazard

User

Lookups

R

User_his tory Sync_histary

App_setting

Figure 2 - First ERD

This ERD represents the basis of our database for the first implementation of our project. After
creating it and going through several iterations (using draw.io [18]), we have now converted this
design into a PostgreSQL database using pgAdmin 3 [19]. This allows us to quickly and easily edit the
database through a simple interface, and it also has allowed me to set up a local version of the
database on my machine (for testing purposes).

3.2 User Interface Design

The user interface is not the highest priority at the moment, however it is important to create an
easy to use interface that the first testers (Opus employees) will be able to understand and use
effectively. For our first prototype not much time will be allocated into making the user interface
look “nice.” This time will instead be put towards the primary functionalities of the application. With
that being said, the first prototype will ultimately be used by a group of Opus employees, and as
such we don’t want the user interface to have any negative connotation due to the way it looks. It
should be as simple and clean as possible.

The following figures are mock ups created at the very first idea proposal stage and were used as a
tool to aid HazApp’s application process. While they are slightly dated and a lot has changed since
my involvement in the project, | will be using these as a very rough template for the user interface
design | will be working on.

XiX

Hazard Type:

" b
- - b
= o Fam
T = 5 s prr— r
Hazard 18: Vehicle Accident Black Spot Location Type:

& vehicle Accidents | [ree——— Click to add
El recorded 08 . — — — picture
- - . Hazard Description:

Figure 3 - Mobile user interface prototype [1]

| really like the idea of having a full screen map view that showing the local area’s project sites and
hazards. Due to the limited screen sizes of mobiles, maximising the efficiency of space by minimising
the amount of unneeded clutter is a must. Similar to the above figure | will also include a small
hazard form popup that will take up about half a screen when someone wishes to view or log a
hazard. This should still leave enough room for the user to accurately select the correct area on the
map.

3.3 Progress Plan

With a more concrete game plan forming we are now working on a scheduled plan for the first
release of the mobile and desktop application. The table below is our finalised development plan for
this stage. It should be noted that this plan covers all aspects project and there will be some areas
that | will not be directly involved in (mainly the desktop side of the application). This is primarily to
allow me to focus purely on the mobile side of the application. In terms of general development the
areas that are of critical importance to me are the database design (which will be implemented as a
PostgreSQL database), accessing the database and performing simple CRUD (Create, Read, Update
and Delete) operations using PHP, the ability to add hazards to the database using a mobile interface
| will be creating (this should also incorporate the mapping technology ArcGIS), and the ability to
retrieve all local hazards from the database and display them via the ArcGIS map on the mobile

application.
Iteration |Due
Type Feature Description (Week) [Date
28th
Design Stage |Database Design database (ERD) 0| April
Project 29th
Initiation Planning Low level task assignment and plan 0| April
First Release
Dev Database Setup dev, uat databases with Postgis 0| 6th May
First Release 13th
Dev Database Implement database 1| May

XX

First Release 13th

Dev Base Application |Base Cl app with required libraries etc 1| May
First Release 20th
Dev Base Application [Mapping requirements 2| May
First Release 20th
Dev Base Application [Theme, styling, look / feel. mock pages 2| May
First Release [Adding a Hazard 27th
Dev on Desktop CRUD for hazards 3| May
First Release Prepare a list of the hazards in the system, with an 27th
Dev Hazard List ability to search and query 3| May
First Release

Dev Base Application |Configure to authenticate with AD 4(3rd June
First Release [Base Mobile

Dev Application Base app setup for the HTML5 WebApps 4(3rd June
First Release [Mobile App Add 10th
Dev Hazards Ability to add hazards on the mobile interface 5|June
First Release [Mobile App View [Ability to view all hazards on the mobile device 10th
Dev Hazards (using GPS as well) 5|June
First Release Map view of all hazards with the additional of other 17th
Dev Hazard Map spatial queries 6|June
First Release To prepare users for UAT and any adjustments 24th
Admin UAT Feedback before commencing full pilot 7|June

Table 1 - Progress plan for first release

As seen in the table above, the final due date we are aiming for (at least for our initial prototype) is
the 24™ of June. At this point we hope to have a working desktop and mobile application that can be
tested in a real world environment by a small group of Opus employees. As it is the first prototype
we will only be focussing on the most important aspects of the application that we deem necessary.
This means we will not be implementing functions such as offline use or statistical visualisations until
a later release. Assuming all goes well the first prototype will be the most important part of the
project so far. It will enable us to truly see if the idea is viable, and it will definitely highlight aspects
that are weak in the design.

XXi

Chapter 2 -
Development

4. First Prototype

After the successful completion of our planning phases we will now be beginning the development
on our first prototype. As mentioned in the project plan, | will primarily be focussing my
development on the mobile side of the project, and as such this chapter will be following
development from my point of view. Throughout this chapter | will be making reference to the
desktop side of the project however my involvement in that part of the project may be limited for
the time being.

The first working prototype will be due at the end of June. By then | hope to have the mobile
application accessing the database servers and preforming simple CRUD operations for hazards, a
basic form for adding hazards, and utilisation of the ArcGIS mapping technology which will show
localised hazards and have some functionality for reporting of hazards through a geospatial
navigation interface.

As this is only the first prototype and we have a limited time frame before the first iteration of user
testing commences, several “luxuries” will be left out depending on time. As mentioned earlier we
will not be bothering applying any functionality for offline testing at this stage and | will most likely
not be spending a lot of time on the user interface and other things like fancy transitions between
screens. As such | will probably be ignoring the mobile web app frameworks, stylesheet languages,
and will only be using JavaScript frameworks where absolutely necessary.

It should be noted that due to a differential between the submission time for this report and the
time for our first application testing phase, several of the above features may not be completed by
the time this report is completed. With this in mind the final area in this report will summarise what
will be completed in the coming days (leading towards the first deployment).

4.1 Accessing Database using PHP

While | have had some experience with HTML, JavaScript and CSS, this is my first exposure to PHP
programming. Fortunately | have also had some experience with SQL databases and the functions of
such databases. Because of this PHP for database management felt very familiar, and no real
difficulties were encountered when trying out the basic CRUD operations. One minor setback | did
encounter was when trying to access the database tables. At first | did not realise that when using
PostgreSQL queries in PHP, all table names in single quotations were automatically converted to
lower case. This essentially meant my PHP code was not recognising any of the tables in my queries
(as they were defined in the database with a capital first letter, for example ‘Hazards’). After some
minor confusion | contacted one of the PHP experts at Opus who informed me of the problem, and a

XXii

few solutions. One being changing the table names in the database to be all lower case, and the
other to slightly alter my queries to include an extra set of quotations around the table name so that
it keeps its case.

| have included below the two most important aspects of using PHP to access the database; creating
a connection to the database, and defining a query (in this case a simply lookup). [20]

$db = pg_connect(*'host=localhost port=5432 dbname=postgres
user=postgres password=password')

Figure 4 - Connecting to the PostgreSQL database using PHP

If you notice in the above code | have set the host to localhost, | have done this as while we are yet
to deploy our first version, | have been testing my code using a localised copied version of the
database. To access the database through the localhost on my computer | have used the free
database connection program XAMPP [21] which opens specific connection modules such as Apache
or MySQL. When we release the first version of our applications to some Opus testing staff | will
instead be connecting to a server database created by the company.

$query = "SELECT * FROM hazards;
$result = pg_gquery($query)

Figure 5 - A simple SELECT PHP query

This PHP query is the most simple of queries, all it does is get all of the entries in the ‘hazards’ table
and stores them in a result. For testing purposes | continued this followed this code with a few
simple echo statements to view the data.

For purposes of error handling and safety | have also included catches to handle and display any
errors that may occur while either connecting to the database or querying the database. Again this is
very simple to do but it holds massive benefits in terms of resolving errors in the early development
stages. This is done within a single line that follows either an attempted connection or query (as
seen below):

or die("Error: ".pg_last _error(Q));

Figure 6 - Basic PHP error handling

4.2 Creating the Mobile Side Using HTML5

The second piece of the mobile prototype is the actual HTML5 application, it will essentially be the
interface between the user, the map, and the database. Due to its complex nature | have separated
this task into 4 smaller subtasks. These are; the ArcGIS map, the HTML5 form, adding hazards to the
database via the HTML5 form and a PHP connection, and retrieving and displaying local hazards from
the database onto the map.

ArcGIS Mapping

While | have had some experience using enterprise mapping API’s (in particular Google Maps), this is
my first experience using Esri’s ArcGIS mapping technologies. As such | have had to put in quite a lot
of time towards learning the API as there are a lot of different functionalities that | will have to be
utilising to effectively solve the problems. To start, | simply tried to get a map displayed within my

Xxiii

testing browser. This was done purely using JavaScript and some of Esri’s libraries [16]. The code
snippet | have included below is the most basic of maps which is located above Auckland city.
require(["esri/map", "dojo/domReady!"], function(Map) {

var map = new Map("'map", {
center: [-174.7400, 36.8406],

zoom: 8,
basemap: ""topo"
D

s

Figure 7 - Basic ArcGIS JavaScript code
The most important aspect to using ArcGIS through JavaScript is the first line of the above code. The
‘require” keyword defines what libraries are to be downloaded from Esri as well as the functions
that will operate on the given map. This can be expanded immensely to cater for all different
functionalities used by the ArcGIS map.

The first functionality that | have decided to add is the ability to zoom to the current device’s
location (using Geolocation to get a latitude and longitude value). The reason | have prioritised this
functionality so highly is because even for this first prototype, the users will be wanting to log
hazards using their mobile devices while on work-sites. By allowing them to automatically zoom the
map to their current location by the click of a button, Opus employees will be able to quickly locate
the area where they wish to report a hazard and can easily view all hazards in the local area (to be
completed later).

In terms of the map style | want to have something that is clean and not overly complicated, but also
shows enough detail of streets, building groups, and environmental areas to not only be visually
appealing, but also practically useful.

Below are a few of the alternative map styles | have considered. While there are many more map
styles available (both created by Esri and created open source), these were the four that | found to
best fit the design requirements.

thaven

i

St Marys
Bay

Auc
Ce

Pons onby

Figure 8 - Gray view Figure 9 - Hybrid view

XXiv

Sn“’”w
0 = Sl
Londang,. o8 v & FCx iy Au

Dunsdingg,

oorde, 1555 orneill St B af
Figure 10 - Topo view Figure 11 - Streets view

My decision was narrowed down to either the ‘streets’ view or the ‘topo’ view. Both ultimately
function very similar but have slight differences that | have used in my decision making process. The
‘streets’ view offers more detail of roads; it has several different shade to categorise the different
types of roads (for example the darkest road in the above image is State Highway 1). Whereas the
‘topo’ view does not focus so heavily on the roads (although it does show them in adequate detail),
instead it offers better visualisations of building areas. In the above image it is clear what area is
more residential (the left half) and what area has a higher density of larger commercial buildings
(the right half). While both the ‘streets’ view and the ‘topo’ view have only minor differences, | have
decided to go with the ‘topo’ view as | believe it gives enough detail of roads, it is clean and easy to
look at, and the building density shading system will be massively beneficial to users when locating
particular work sites.

HTMLS5 Form Creation

The form view for HazApp is vitally important to the project as with a broken or unusable form, no

data may be logged, therefore the very core idea of HazApp won’t be able to function. While there
are several aspects to the form view already, below | will be covering the most important areas and
those which | had the most difficulty with.

Hazard Type Input
Crucial to reporting hazards is the form detailing the specifics of a given hazard. | will be reducing the

possible inputs to only those | consider a necessity. First and foremost is a hazard categorisation
input, which will give the option to choose a pre-set hazard type. The hazard categorisation input is
based off the databases Hazard Type Lookup table. The reason we have decided not to allow users
to input a custom hazard type is that the hazard type list needs to be up to Opus’ health and safety
standards. As such users should only be able to select hazard types of an approved list. Another
benefit from having a fully defined hazard type list to choose from is that statistical analysis will be
far easier to process and far clearer to understand, and it will also open avenues for things such as
symbol filtering on the map view (which may be implemented later). Fortunately the selectable
inputs will be easily modifiable in the future as all that is necessary is the addition of a new column
into the PostgreSQL database.

Latitude and Longitude Fields
This will be followed by the location (latitude and longitude) of the current hazard, which will either

take the values from the area selected on the map or another value directly input by the user.
Seeing as the latitude and longitude fields are currently editable (this may be changed later down

XXV

the track), It is very important at this stage to make sure that they have the correct input validation
as any malformed input will make that particular hazard unusable in the database. To do this | have
used a Knockout binding. This particular Knockout binding limits the potential input keys available to
the user when they have the latitude or longitude field. As seen below, it only allows the simple
editable inputs (such as backspace, delete and enter), and the numerical inputs (including negative
numbers as well as decimal points).

// Custom binding to limit a text input to a floating point number

ko.bindingHandlers.numeric = |
init: functian (element, walueRccessor) [

% (element) .on("keydown", function (event) [
// Rllow: backspace, delete, tab, escape, enter, and -
if (event.keyCode = 46 || event.keyCode =— & || event.keyCode = 9 || event.keyCode = 27 || event.keyCode = 13 || event.keyCode = 189 ||
f/ Rllow: Ctrl+
{event.ctrlEey == true) ||
f/ Rllow: . (decimal point)
(event.keyCode = 190 || ewvent.keyCode = 110) ||

// Rllow: home, end, left, right
(event.keyCode »>= 35 && event.keyCode <= 33)) |{
// allow input

return;
}
else |
// Ensure that it is a number and stop the keypress
if (event.shiftKey || (event.keyCode < 48 || event.keyCode > 57) && (event.keyCode < 96 || event.keyCode > 105)) {

event.preventDefault() ;

Figure 12 - Knockout numeric binding

This binding is then simply applied to both the latitude and longitude fields by including:
data-bind= "numeric”

within the input tag.

Calendar Inputs
It is very important from a usability point of view to offer some form of date picker for the calendar

inputs (start date and end date). While HTML5 does offer a very simple and easily implementable

date picker via:

input type= "date"
it unfortunately is not supported in Opus’ company standard browser (Internet Explorer 10). As such
| have had to find another option for a date picker.

| have decided to go with JQuery Ul’s date picker which can be implemented and modified using
Knockout. As seen in the code snippet below, | have decided to use two primary functions within the
date picker; ‘init’ (to initialise the date picker itself as well as set the current date for the start date
field) and ‘update’ (in the event that the user wishes to input/change a new date).

XXVi

S/ Custom binding for a datepicker input field
ko.bindingHandlers.datepicker = |
init: function{element, wvaluelccessor, allBindingalkccessor) |
f/initialize datepicker with some opticnal options
var options = allBindingsAccessor() .datepickerOptions || {}.
el = ${element):
el.datepicker {options) ;
f/handle the field changing by registering datepicker's changeDate ewvent
ko.utils.registerEventHandler (element, "changelDate™, functian () {
var cbservable = valuelccessor() ;
observable (el.datepicker ("getDate")) :
by:
f/handle disposal (if KO removes by the template binding)
ko.utils.domMNodeDisposal .addDisposeCallback{element, functian() |

1 :
}J’
update: functian({element, wvaluelccessor) |
var value = ko.utils.unwrapObservable (valuelccessor()),
el = £({element) ;
f/handle date data coming via json from Microsoft
if (String(value) .index0f('/Date(') = 0} |
value = pnew Date (parselnt (value.replace (/" /Date’ ({.*2))/ gi, "s1"))) !
}
var current = el.datepicker("get
if {wvalue - current !'=— 0} |

el.datepicker("setDate™, wvalue):

Date™) ;

i
Figure 13 - Custom Knockout binding for date picker

As demonstrated in the picture below, a user simply selects the date field (in this case the active
date) and the date picker appears below. Then instead of having to input the date numerically they
can simple select the desired date on the popup calendar. | believe this makes the date selection
task significantly easier for the user, and it also negates any need for custom input validation as the
user cannot directly manipulate the input via keyboard.

Active Date

23/09/2015

(4] September 2015 0

Su Mo Tu We Th FrSa

3
10

Figure 14 - Date picker user interface

XXVii

5. Second Development Phase

After successfully completing the first prototype many ideas have been refactored, most importantly
the desktop and mobile side for the hazard reporting has been decided to merge into a single
application. This combined application will primarily be targeting the screen resolution of mobile
tablets as this is what Opus’ hazard site managers will most often be using. With that in mind, we
will also have to cater for both larger screens (i.e. desktop computers) and significantly smaller
screens (i.e. mobile phones). As such we will be primarily be utilising Bootstrap’s functionality of
auto adjusting widgets to create a responsive web design.

To stay within Opus’ software development standards we will now be managing our code base using
Codelgniter, which is an open source web application development framework used in building
dynamic sites with PHP. This means that rather than having a few colossal code bases such as a
single html file, one CSS file, and one JavaScript file, we instead split the development areas into
better defined and more manageable parts. For example we will be having a separate file for the
ArcGIS mapping JavaScript, the Bootstrap JavaScript, and the main JavaScript (which includes
Knockout). While this has been a challenge adjusting to, it ensures that after | have completed this
project the application will be up to Opus’ software standards and as such will still be able to be
maintained and updated by any of Opus’ software developers.

This next area will be covering the finalised development of the hazard reporting side of the
application as | will be expanding on the ideas and techniques used for the first prototype. It will be
highlighting all significant points we have faced all the way from the base application to the final
product.

5.1 Base Application

Getting the base application up and working holds the greatest of importance at the current stage.
While we will not be using the first prototype as a skeleton for further development, many of the
techniques and concepts gained by creating the prototype will likely prove invaluable for this next
stage. It should have the core functionality working before we develop any of the more intricate
functionalities. The core functions needed include:

e Having a map view which shows all of the current hazards in the given area (the hazards and
their information will be pulled from the PostgreSQL database and superimposed on the
ArcGIS map).

e Having functionality to select a particular hazard on the map view to identify its specific
information (for example the hazard type, severity, description, when it was logged and who
by).

e Having functionality to add a new hazard to a specific area on the map view by clicking on
the chosen location.

e When adding a new hazard, a hazard form needs to appear which will allow the user to log
the additional information about the hazard.

e Some simple form validation so that incorrect data (which could potentially break the
database) cannot make its way into the database.

XXViii

e Some simple photo/video attachment option.
e Having functionality to submit the hazard and its form to the PostgreSQL database so that it
will show up as a new hazard on the map view.

While many of these seem trivial and/or very obvious to include in such an application, it is of much
importance that we map out exactly what is needed so that later down the road we don’t realise we
have missed a critical functionality (which may be significantly harder to implement later rather than
earlier in development). By having all of the listed functionalities working as expected, we will have a
strong foundation of which we will hopefully have ease implementing some of the more difficult
functionalities which will be coming later.

| will now be covering over the core functionalities in more detail, focussing specifically on any points
of interest and any surprises or difficulties | have encountered. | will also be including some of the
more influential screens so that comparisons between old and new user interfaces may be easily
made.

Map View

It is of vital importance that the map view is not only easy to understand and visually appealing, but
also offers all the expected functionality of being to add and view different hazards. The base map
view tab has maximised the size of the map itself so that users (especially using devices with smaller
screens) can get the most information possible. The ArcGIS map offers all the normal functionality of
a digital map (such as relocation and zooming) but it also allows for different hazards pulled from the
PostgreSQL database to be treated as entities on the map. This not only allows them to move and
zoom with the map, but it also offers other functionalities such as selecting a particular hazard and
viewing its information or even editing it. As seen in the screenshot below, all of the currently active
hazards in the designated area are shown, however at the present time the hazards offer very little
information on their own other that where the hazard was reported. If a user wanted to see what a
particular hazard’s ‘type’ was, they would have to open the hazards information dialogue. This will
most definitely be improved in the future as | believe the hazards on the map view have the
potential to offer a lot more information on their own. For example by changing the colour of the
hazard symbol to represent different severity levels or by changing the hazard symbol itself to
represent different hazard types.

XXiX

1 Home

== Add Hazard

Whenuapdh
Village

- “ Hobsonville

Taupaki

Te Atatu

Peninsula
Massey

Swanson g, e 79
o™

Ranui

Henderson
Valley

&

Qb Orata 7y |

K By [

& & oaied

Waiatarua 8%

Lynfield
}

Mission

Onehunga

St Heliers

Panmure

@ Hazard Map

Eastern

Beach
Pine
i Harbour
Cove Hawick
S
g & 3

A North &

1 Park 4

1 *

3

Burswood

Figure 15 - Map view version 1

Information Dialogue
While the map view does have some potential to give additional information such as severity or

type, it is still necessary to be able to view additional information about a particular hazard. This is

where the information dialogues come into play. Currently the information dialogues pull all

attributes and attribute data of a particular hazard from the PostgreSQL database and display it in a

very simple alert popup. As seen below this is unattractive and difficult to read. While it is just a filler

for the meantime, it will definitely be changed to something more visually appealing and easier to

understand. We will most likely be using a Bootstrap modal which follows our user interface theme

and some filtering will be necessary (i.e. removing any unhelpful information).

< Add Hazard

Whenuapai
Village

Taupaki

Te Atatu

Peninsula
Massey

ra
&
4

£ Fark

b ot Y

Waiatarua - @ £ oty

Harbou

A £

Swanson. g, <™ % Ranyj o
i & 4
F &
ot
X <] /2 Rosebank _
% & Toteg
Y %,
2 Glenddne %
Henderson it ”5\
Valley o

iy, o5 |
Chatswoo

Mount
Albert

Lynh|

Figure 16 - Hazard dialogue version 1

description:
Redicactive waste spilled ever road

mitigation:
Used a mop

reported_by:
Rowan Carmichael

is_active:
t

start_date:
2015-07-17 00:00:00

end_date:
2015-08-31 00:00:00

created_at:
2015-07-17 14:18:08.88

updated_at:
2015-07-17 14:18:08.88

created by:
null

updated_by:
null

lat:
-36.8734588100091

leng:
174.720477142331

|bers

i

@ Hazard Map

Hu
Ker
P
Eastern
Beach
o
Pine
Harbour
Farm
Cove Hawick
>
Horth &
g Park §
2 i
Burswoad L | g

Unfortunately seeing as we have utilised lookup tables for hazard type and severity, the information

shown about these two attributes is only a reference ID to another table. As such instead of showing

XXX

the hazard type as ‘mechanical’ it would instead simply display ‘2. Again this is something that will
need to be fixed before we are ready to push it out for the first round of user acceptance testing.
Fortunately this shouldn’t be too difficult of a task, all that is needed is some SQL code which will
create a new view which contains the appropriate information.

Hazard Form

As seen in the two screenshots above, we have implemented a simple ‘Add Hazard’ button to the
map view. Once clicked a small prompt appears telling the user to “Click on the map to add a new
hazard” and once the user has done so it changes the tab to the hazard form. The hazard form
(shown below has some very simple inputs for all the necessary attributes. At the moment all of the
attributes in the hazard table have inputs in the hazard form, however in the not too distant future
we will be evaluating whether or not all of these fields are necessary. So far we plan on replacing the
latitude and longitude fields with something that is more easily understandable to humans, such as a
smaller version of the map view or perhaps a dropdown list of active project sites. By the time we
roll out for the first stage of user acceptance testing we will also have a log in system so the
“Reported By” field may become redundant. And finally, we intend on removing the basic
photo/video attachment button with a function that allows a user to capture a photo/video within
the application if using a device with a camera (rather than having to capture it outside the
application, then save it, and then select it as an attachment). As it stands | don’t believe anyone will
bother going through all the additional steps, and as such this usability problem needs to be solved.

Register a new Hazard
Hazard Type

==

Latitude

‘ -36 8216295726499

Longitude

‘ 174 721433200542

Reported By

Rowan Carmichael

Description

Severity (1 Low - 5 High)
1 2 3

Mitigation

Start Date

‘ 24/07/2015

End Date
Currently Active

Photo/Video Attachments

W Choose file

Figure 17 - Hazard form version 1

At the moment the only necessary fields are the location (latitude and longitude), the hazard type,
and the reported date. Once these and any of the optional fields are completed, the user may
submit the form to the PostgreSQL database and it should be instantly available for all other Opus
employees to view on the map view.

XXXi

5.2 User Interface Improvements

After the successfully completion of the base application version 1, it is clear there is a lot of room
for some user interface improvements. In the previous section | mentioned some of the more
obvious changes that were required and in this section | will be highlighting how we went about
solving those (and any other) user interface problems.

The changes outlined below are in preparation for the first stage of user acceptance testing, which |
will be covering in more detail in a later section.

Map View

Seeing as the map view is so influential to the entire application, it is of much importance to make it
as visually appealing and usable as possible. The first change we made to the map view was
differentiating different hazard types by using different representative symbols. While the symbols
have been designed to be easily understandable, we have also included a legend to clarify any
misunderstandings.

The symbols themselves have been based on the hazard type lookup table in our database. While
many have been designed, and many more will likely be designed in the future, the screenshot
below shows the new map view with the new symbols and the legend side tab (which can be
expanded and collapsed at any time). When compared with the map view version 1 screenshot, it is
now clearly more readable and visually appealing.

Home @ Hazard Map

= Add Hazard

Herald
Island

Whenuapai
Village

22 -
Chatswood. "%y

Devonport:

" Graal Bartior -

Auckland Wssion 121" Moan Bay < Pine Harkey,
A Bay

5t Heliers

Eastern
Beach

Cove Howick
Panmure

- Water Hazard

ok Ry

a,
e et ay

Penrose

£ =g, 12
B - \5_
iy V.
? & “Dnehunga 3
Hazard Legend L * Lynhta o e e %

i s =

churehSt

Burswood
=

Figure 18 - Map view version 2

Information Dialogue

The old information dialogue was definitely in need of a clean-up of both what information was
shown and how the information was shown. We have improved the old hazard information dialogue
into a new hazard information modal. A decent amount of the unnecessary information has been

XXXii

removed and the design has been upgraded to a Bootstrap modal. This way the user interface can
more easily align with our overall design. As seen in the screenshot below the new modal also shows
a visualisation of any attached pictures which were submitted with the hazard. Again this is further
increasing the richness of information available, while reducing any distracting or unnecessary
factors.

Water Hazard

Type Water Lat. / -43.492104/
Long. 172647719
Severity Medium
Likelihood Medium
Start 02/09/2015
Date Reported Mitchell Bennett
By

Description Huge amounts of surface flooding due to sustained storms.

Control Create barricades and sand banks in the present. Improve drainage
in the future.

Figure 19 - Hazard Information version 2

Hazard Form

One of the more important improvements made was a suggestion from the business/health
management team. They have stated that the old severity field does not align with their business
safety standards. In particular, their safety scales are based on a combination of severity and
likelihood of an event happening (the scale is shown in item 2 of the appendix). As seen in the
screenshot below, we have included this suggestion by creating a two dimensional grid which
combines a severity scale and a likelihood scale.

The newly refactored hazard form also include the mini-map of the location where the hazard has
been reported. This is significantly easier to understand than what we had before (which was simply
numerical values for the latitude and longitude fields). As an added bonus the new mini-map only
shows the symbol of the hazard which is currently being reported. This is especially useful if a user is
reporting several hazards at the same site or reporting a hazard in an area which is already highly
populated with hazards. By only showing the hazard that is being reported, the user can more easily
identify whether or not the location selected on the map view is correct.

XXXiii

Mechanical

Chosen location

Whenuapai ‘
Village

Latitude: -36.793495, Latitude: 174.639878

Reported By

Rowan Carmichael

Description

Fatality causing Minor
i Mejor lliness Short term disability Injury/liness
Likefihoad Long term disability
Severity H H M

Low @ Medium High Certain
Almost Certain

Likelihood

Low Medium @ High Medium
Reasanably Likely

Figure 20 - Hazard Form version 2

6. UAT Development Phase

At this point in development we are now ready to put our current version of HazApp online so that
the first stage of user acceptance testing may begin. In the following section | will make reference to
some of the feedback we have received from the user acceptance test and how we have
implemented the necessary changes. This section will primarily focus on the actual development
done due to the feedback from the user acceptance testing, rather than focussing on the user
acceptance testing itself (which will be covered more thoroughly in a later section).

Some of the most immediate feedback received was about very small bugs such as incorrect
geolocation tracking, and small features such as capturing photos within the application. In this
development phase we will not only be making changes based off the user acceptance test
feedback, but also several intended improvements as well. Most notably, the beginning of the data
analysis.

6.1 Correcting the Geolocation Zoom

An interesting bug that became apparent after giving our application to the user acceptance test
participants was that in some instances when the ‘auto-zoom to current location’ function activates,
the GPS recognises that the user is somewhere where they aren’t. More specifically, this only
happens when users use HazApp within the Opus network (i.e. desktop computers in Opus offices).
After noticing this problem, recreating it consistently, and discussing it with some of the other
software developers at Opus, we have come to the conclusion that it likely has something to do with
the way in which the desktop computers at Opus are set up on the Opus backbone network. The
network itself begins and ends in Christchurch which is the location it automatically zooms to in

XXXiV

these instances. While this seems like a relatively minute problem as users can still scroll to their
desired location on the map (like any normal mapping interface), it is important for us to have the
best usability for our application as possible, and as such we felt the need to correct it.

Our first thought was to simply try another geolocator framework, however after testing the
problem on a different framework (in this case GeoPlugin) we found we had the exact same
problem. Being unable to solve the problem this way we decided to consider other workarounds. In
the end we decided to simply include a local bookmarks feature in which users have stored locations
which they can easily jump between. Following the consistent design principles, we have made the
location bookmark feature in a way that it doesn’t unnecessarily distract the user or take up too
much screen real estate, while still functioning as intended.

- P
Jetived®) -

&

=z X o o, i 5 &
% a 20 Merivale N @ @a -9 e
+ &) ot © % A & i) & 2 e Avun‘\Sls i
2 Y o % o 2 Edgeware-Rd- —&: @ g
2 x o o) 2 L 4 5 Dallingto
— %] 5 geware ¢ = aall or
& po ad® u + 5o = Medway St/ge y
= P » A X Molly Rd @ CanonSt L @ & Christchurch CBD
: a"“h z % w* E |4 2 e . Auckland CBD
2 ; o 3
LR Ed % e I— £ B Richmond North Avon-Rd | Robson K Auekland G
3] 5 n, areRd -l | B I 5 Morris St a8 B Aucklan
Fendaltan- gy £ s, o shy St @ sl @ il v
&) 7 éa«“‘ P 1l a Auckland Region
. s, P Re Bealey i £ ,,, B2 wellington CBD o)
T S E - % v 1 ® [Avonside 5 z
1 o il % Ea— 5 2 i | ChristchurchCBD 8
K S e e S Y S = 2 B
% Nak s Harp i z ° 2 73 % W
o w82 salisbury St = 5 -
& o BB 2 it
Matai St 5 5 g
Hagh £ 8 @
inmarmock st Park KimoreStz &
FRETR] | o CheslerStE 3 5
Armagh St <
; Hagley Gloucester St - Gloucester-St
z i i Worcester St Christchurch & Worcesterst
F £ ° £
E Hereford St =
h B & 8
i1l d -
E 2 = it
S i T e % LichfieldSt
e e £ g—5 0 s Hagloy 3
Elizabeth = g -1 Sauth Par = &
’ b5 R b South _g® @ = St Asaph-St
BrenneinT o 5 g
= 5 & 8 ey
B_prinoess St < & § i o T
o g = = pi
g = s Moorliouse Ave
% z : = 5 MooHiouse ave
% ‘\\gl o HazeldeanRd & Caylest
"‘5’; & 5 Disraeli st @ E Byron St-—
e 5 Gl g ® v e
% @ 2| $-f-—n o
5 FarfevdAve| £ 5 8| 5 &
o X o € o =
s BurkelSt<(|_ £ § 8 2
kS Ruskinst| T & ¢ m
2 rold St Rij = = Brougham: St
W 5, o T ing:Raad; Svdanhan .

Figure 21 - Map view with location bookmark feature

The location bookmark list can easily be expanded/edited in the future to fit the needs of the users.

However at this stage by default it only consists of the three major cities in New Zealand which Opus
operates at.

6.2 Mobile Specific Functionalities

When uploading a photo(s) for a particular reported hazard while using a mobile phone or tablet,
the user now has the option to either choose an image from their gallery/documents, or to capture a
new photo within the application (as seen in the screenshot below). This is important as the vast
majority of the hazard reporting will be done on project sites where the users may not have
immediate access to a desktop computer or laptop. As such the hazard reporting via smartphone or
tablet needs to be as easy as possible, which is why the seamless transition between the hazard
reporting form and the photo capturing is so important. This greatly improves the user experience as

now the user doesn’t have to exit the application to take a picture then return to the application to
upload it.

XXXV

vodafone NZ (& Oev dl12:19

Choose an action

© Camera

® Camcorder

@ Sound Recorder

B Documents

Figure 22 - Adding photo attachment via smartphone

As seen above, when the user selects to add a photo attachment, several options appears. This
should be consistent across all mobile browsers and all modern smartphones and tablets, so there
shouldn’t be any limitations in that aspect.

6.3 Data Analysis Using HighCharts

While the majority of this project has been focussing on the hazard reporting side of HazApp, we
have also included the beginnings of the data analysis side of the project. At the time being we have
only been analysing the data in ways that seem most useful (for example the hazard type
distribution chart shown below). This has been done by feeding the PostgreSQL data to the data
analytics JavaScript framework Highcharts. This generates interactive chart visualisations which are
significantly easier to comprehend than the data that they have been composed from alone.

HAZARDS RECORDED

PErS0N INJury: 12.5

MECHANICAL
HAZArns RECOrDED: 10.4%
~— MBCHaMICAL: 10.4 7

Wagar: 4.2 9

EXPLOZIVE: B.3 § ELBCEMCAL: 23.3 ¥

Figure 23 - Highcharts analysis of hazard type distribution

XXXVi

This infographic may be used to highlight areas which Opus needs to deploy further training regimes
or better safety practices. For example if 50% of the reported hazards were of the “Personal Injury”
hazard type, Opus may need to consider ways on how to combat this.

Mechanical -+ Water Electrical -+ Chemical -* Personal

Figure 24 - Number of hazards reported per day via line chart

The analysis side of HazApp also allows a user to view the distribution of reported hazards on a daily
basis. By highlighting any single data point the graph shows the exact date in question and how
many hazards were reported for that particular type of hazard on that particular day. There is also a
filtering functionality in which a user may select a type of hazard(s) to filter out of the graph which
will reduce the cluttering. This tool is an incredibly useful way of visualising general trends within a
given time period, for example there may be an increase in personal injuries over the Summer
period. If this were the case Opus’ managers could be prompted into questioning why and
potentially improving work practices to reduce the number of personal injuries occurring over this
time. It may also help give insight into the effectiveness of Opus’ health and safety training sessions.
For example it would be expected that if new health and safety regulations were to be introduced
around how mechanical vehicles/devices are managed there would be a decrease in the number of
mechanical hazards reported.

While we have only captured what | consider the most important data analysis forms as of yet, we
have also began planning on what other visualisations may be useful to both the average user as
well as the managers. This may include:

e As well as a line graph that shows how many hazards have been reported daily within a
given time frame, showing how many of the reported hazards have been “solved” daily
within a given time frame.

e Dividing major areas up (for example Auckland CBD, Wellington CBD, and Christchurch CBD),
so that analysis may be performed and compared on a regional basis. For example are there
certain types of hazards that occur more regularly in Auckland CBD compared to
Christchurch CDB.

XXXVii

e For each type of hazard, are there differences in the severity and/or likelihood as compared
to other hazard types. This may again give insight on which types of hazards are more
important to be taught on.

e Are particular project sites reporting an unsafe number of hazards, and if so what can be
done to reduce the number (for example is more training on safe business practices needed
and/or is the site’s safety manager doing an adequate job).

While there are many more features planned for the upcoming development phases, time has been
a massive factor which has narrowed my scope to only what | have considered more important to
getting my original plans of having a working application up and running.

XXXViii

Chapter 3 — Evaluation
and Results

7. Usability

Seeing as HazApp is intended to be offered to all New Zealand Opus employees/contractors and
eventually (assuming success) all Opus employees worldwide, it is of critical importance to have the
application as user friendly as possible. As such | have decided to compare and criticise our current
application against what | believe to be the most relevant aspects of Nielsen’s 10 Heuristics and
Shneiderman’s 8 Golden Rules. From this | hope to find any missteps that may damage the overall
usability of the application so that | may attempt to rectify them.

After this | will also be evaluating some of the feedback received from the first stage of user
acceptance testing. Similarly to the heuristic evaluations, | hope to find any areas that may be
difficult to understand by the average user or any other glaring issues with the application.

7.1 Nielsen’s Heuristics

Nielsen’s Heuristics is an incredibly influential evaluation tool commonly used in areas of Human-
Computer Interaction. It specifically involves evaluators examining the interface and judging its
compliance with recognized usability principles (the heuristics). The main goal of heuristic
evaluations is to identify any problems associated with the design of user interfaces, and while it is a
somewhat informal methods of usability inspection, it can still highlight any potential holes in our
application’s usability. [22] [23] [24]

In this section | will be focussing on the heuristics that | have found to be most relevant to our
project, and evaluating how HazApp stands up to them. They are as follows:

Match between system and real world

To do this we have attempted to make Map view as similar to a real map as possible, this was
relatively easy as ArcGIS (much like any modern mapping API) has been created in a way to be as
recognisable and usable as possible. We have also included several features that would be found on
a normal map as well, for example a legend to better understand the symbols. The form view has
also been designed in a way to be as similar to a real hazard form as possible. It contains all the
expected fields in order, and utilises radio buttons, dropdown lists, and check boxes to increase the
overall usability.

User control and freedom
Having the user locked into a pre-set path can greatly reduce the user’s feel of control. As such we
have developed HazApp in a way as to never lock the user in to making a decision. At any time can

XXXiX

they may move between tabs without disrupting the system, and they may jump in and out of the
form as they please without any repercussions.

Consistency and standards

We have utilised bootstrap and CSS to keep a consistent look over the entire application and we
have used consistent wording in the form (for example “Controls” for how the hazard has been
mitigated) so that at no point different words, situations, or actions mean the same thing. Also the
form view is based upon Opus’ health and safety standards, so any users familiar with such
standards will have no amount of confusion.

Error prevention

As HazApp is not an incredibly complex system, error prevention was not that difficult to develop
for. Essentially the only area which errors may arrive is the form view. To combat any potential
spawns of errors we have primarily used input validation (including image validation/filtering) thus
eliminating error-prone conditions.

Recognition rather than recall

We have attempted to minimise the user’s memory load by making object, actions, and options as

visible as possible. We have used very clear functions on the map view (for example popup legend

and create new hazard function are both very clear and prompts for hazard creation), and the form
tab has clear and concise field input names with hints where necessary.

Aesthetics and minimalistic design

We have kept the design as consistent, simple and easy to understand as possible, this has been
done in a way to reduce the cognitive load on the user without compromising on the fundamental
functionality. Along with this the hazard information modals only contain information which we
consider most relevant and useful.

Help users recognize, diagnose, and recover from errors

When submitting a hazard form the form validation will check to see if all of the required fields have
been filled correctly. If any haven’t the user will be told so and the particular input field(s) that have
either been missed or entered incorrectly are highlighted to let the user know what area they need
to fix.

7.2 Shneiderman’s Golden Rules
Similar to Nielsen’s Heuristics, Shneiderman’s Golden Rules are intended to help you create a well-
designed user interface and thereby improve the usability of the system. [25]

Following on from the Nielsen’s Heuristics, this section will highlight the most important aspects of
Shneiderman’s 8 Golden Rules (which have not already been covered by in the section above). They
are as follows:

Offer informative feedback

All actions have some form of system feedback. While most are subtle some cases require more
detailed feedback. For example when submitting a hazard correctly, or when submitting a hazard
with an incorrect image (due to incorrect file typing or invalid path), the data will still go through if

xl

submitted, however the user will receive an alert that the form has been completed and submitted
but the image has not been saved (as seen in the screenshot snippets below).

+ Your hazard was saved successfully.

A Home @ Hazard Map

Figure 25 - Information popup for correctly submitted form

@®© Your hazard was saved but your file could not be uploaded:
The upload path does not appear to be valid.

A Home @ Hazard Map

Figure 26 - Information popup for submitting an incorrect file to the database

Permit easy reversal of actions

At any time before submitting the user can edit and of the form fields or cancel the entire form
submission (for example if the location selected is incorrect), and if necessary the user may edit
and/or delete their hazard form submission through the management portal.

Support internal locus of control

HazApp makes the users initiators rather than responders by having all functions requiring a user
action before they do anything. For example if a user wishes to view the information of a particular
hazard they will have to select that hazard on the map, or if they want to create a new hazard report
they have to select to do so. At no point will the application commence any of its functions without
the user’s input. The only changes that will be made within HazApp without a particular user making
an action, is when a different user has submitted a hazard which will make the hazard appear on all
the other users’ maps.

Reduce short-term memory load

The only short-term memory load required at any time should be of a single hazard that a user will
be submitting at the time. As the reporting is done on a single case basis there is no need to
remember past reports, and if any information is needed about past reports it is available through
the information dialogue by selecting the hazard of interest on the map view. We have also avoided
any conditions with multiple page displays, and we have minimised window-motion frequency
where possible.

/.3 User Acceptance Test

The first user acceptance test is in the process of being completed with a small team (approximately
5 people) of Opus’ Geotech Site Managers in the Auckland region. These users have been selected as
they perfectly fit into the demographic of users we are trying to target (i.e. site managers that spend
time reviewing business practices on-site). While we have developed the hazard reporting side of
HazApp to function on all screen sizes from smartphones to desktop computers, the majority of the
time the participants in our first user acceptance test will be reporting on-site hazards using tablets.

It is of great importance that we work closely with some real users and that feedback is received and
discussed early and often. At this stage it is still relatively easy to improve, remove or add new user
interfaces or features. Positive user experience is of critical importance for overall acceptance and
ultimately the success of the application. If the application is difficult to understand and/or a hassle
to use, it simply will not be used. Fortunately we do have users at our disposal who are willing to

xli

help us test our application as at this stage success is not nearly as important as learning from the
users’ feedback and addressing the issues accordingly.

From the first round of feedback we have received the following feedback on additional
functionalities which would greatly benefit the Geotech team:

e Integration with ArcGIS - If the hazards added via the app could reference points
and/or projects in existing ArcGIS maps, Geotech has suggested this would save time and be
a great advantage for them.
This essentially means they would like a function which would allow the information from
the HazApp map to be added with their ArcGIS mapping applications (which they use on a
daily basis). This means that all of information the Geotech team needs would be in one
single application (rather than one application for hazards and one application for everything
else. This could be as simple as adding a link/reference to the hazard however for the
meantime it is undecided on how it will be implemented.

e Photo exports - The ability to bulk export images for a project area, for use in reports and
team or project summaries.

e Hazard statistics/summaries for a project area - This is similar to an already planned
functionality and will be easy to adjust this to defined areas. Essentially it will require some
sort of pdf generator which could also include photo exports (as mentioned above).

While the majority of these feedback points were already planned for in the future it is great to see
that the direction in which we are heading is aligning well with not just the business and health &
safety managers (based off the feedback received at the Executive Leadership Team demonstration),
but also the people who will eventually be making use of our application.

From the first round of feedback it has also been encouraging that the users haven’t raised any
complaints with the user interface or flow of the application. | would like to believe that this is due
to the fact they are happy with how the application currently looks and feels. However for the next
round of feedback we will be prompting the users to focus on and discuss the overall user interface
and flow of HazApp, just to see if there are any easy to fix aspects which may be damaging the
general user experience.

8. Security

While HazApp is still in the current development stage and is only available to a few specially
selected individuals within Opus, security seems somewhat unnecessary. However as HazApp is
eventually deployed to a wider audience it will become more and more important to ensure that any
confidential data is safe so that the Opus and any individuals employed by Opus are never in a
position to be harmed. As such we have focussed on both keeping unwanted users out via a secure
login system, and keeping authorised users from damaging the system/data via input validation and
SQL injection counter measures.

8.1 Database Security

Making sure no malformed or malicious code is inserted into the database is very important to keep
the confidentiality of data at a high, as well as allowing the application to run smoothly and as
intended without any crashes/errors. For the most part this has been done within the form fields’

xlii

validation parameters. As the form fields are the only area which adds data directly back into the
database we have put strict limitations on what may be input for the form fields using Knockout
input validation (as highlighted earlier in ‘First Prototype’ section), however to combat any potential
form of SQL injection we have also used prepared statements which essentially takes the characters
input from the form field(s) and places them directly in the database as text. This means that even if
a user bypasses the input validation, their input will never affect the INSERT statement in any way.

8.2 User Login

Seeing as the hazard reporting side of HazApp will be available via internet browser it is of much
importance to have some form of user login/verification system to limit users to only intended users.
This will not only protect the potentially confidential information about Opus’ business operations,
but also it will negate the possibility of unwanted users “griefing” the system by logging incorrect
and misleading information that may affect real users (for example someone reporting there has
been a chemical explosion in a certain area when in fact everything is fine could halt work in said
area until the confusion was cleared up).

To protect the system from unwanted users we have implemented an htaccess login system which
prevents users from accessing any part of the application without a verified username and
password. If a correct username and password is entered, the user will have full access to HazApp's
reporting features. However if an incorrect username and/or password is entered the authentication
prompt will remain and the application will not be loaded.

Authentication Required

The server http://apps.opus.co.nz:80 requires a username
and password. The server says: Please enter your
credentials to access Hazapp:.

User Mame: opus

Passward;

Figure 27 - htaccess login system prompt

When attempting to access HazApp via browser the prompt above appears before loading any of the
application, as such no information is obtainable without a correct username and password. This
most importantly applies to the page’s html code. As seen in the two screenshots below, no
information is retrievable about the page before the login has been successfully completed, but after
the login a lot of information about the structure and design is obtainable. While this information is
likely safe to be seen by non-approved users, it is still important to keep any information that could
potentially damage Opus’ business confidential where possible (for example if a competitor wanted

xliii

to copy and create a similar application for themselves they wouldn’t get any useful information
without a login).

Q D | Elements | Metwork Sources Timeline Profiles Resources Audits Console

¥ <himl>
<head»</head>
<body></body »
</html>

Figure 28 -Empty html code before login verification

Q, [] | |Elements | Network Sources Timeline Profiles Resources Audits Console
¥ {d1v data-bind="pageVisible: current_page_index() == 2" style="display:
¥ ¢div class="contentPage width-1@8p" style="display: block;"»
¥ <div class="margin-left-3@ margin-top-2@8":
P <putton id="addHazardButton™ type="button" class="btn btn-large m:
getAddHazardButton(), c¢ss: isAddingHazard() ? 'btn-default' : "bitn-
¢hd4 id="addInstruction™ class="inline-block" data-bind="visible:
new hazard.</hd>
<fdivs
<fdivs
¥ <div class="row":
: tbefore
¥ ¢div class="col-md-12 col-sm-12"3
¥ <div id="hazappMapDiv" class="map" style="height: 176px; width: a.
"144447 .638572" data-loaded>
P <div class="accordion" data-bind="mouseover: togglelegend, click
P <div id="hazappMapDiv_root" class="container" style="width: 1257
<fdive

Figure 29 - html code after login verification

9. Performance

As maximising positive user experience is a priority for the success of HazApp, having a good
performance for the web application is very important. Research has shown that having a web page
take too long to load can juristically hurt the overall usability of an application [26]. As such | have
reviewed our current application using YSlow [27], a tool which analyses and grades a web page
based on a set of rules highlighting important areas in regards to performance.

9.1 YSlow Grading

As seen in the screenshot below HazApp (hosted at http://apps.opus.co.nz/HazApp) has a rating of
90 out of 100 (A-Grade). The only area which is not at the A-Grade is the section of “Making fewer
HTTP requests”. The reason this section has not been given an A-Grade is because our application

has several external JavaScript scripts, stylesheets and background images.

xliv

http://apps.opus.co.nz/HazApp

Home | Grade | Components | Statistics Rulesets| YSlow

* || Edit | (%) Help |

Grade 0 Overall performance score 90 Ruleset applied: YSlow URL: hitp://apps.opus.co.nz/hazapp/

ALL(17) FILTERBY: CONTENT (6) | COOKIE (1) | CSS(4) | IMAGES (2) | JAVASCRIPT (2) | SERVER (4)

n/aMake JavaScript and CSS external »Read More

A Awvoid URL redirects

A Make AJAX cacheable

Copyiight @ 2015 Yahoo! Inc. Al rights

Avoid HTTP 404 (Not Found) error

Avoid AlphalmageLoader filter

Avoid empty src or href

Reduce DNS lookups

Remove duplicate JavaScript and CSS

Use GET for AJAX requests

Reduce cookie size

| |® |2 |>|>|> >

Do not scale images in HTML

Figure 30 - YSlow Performance Review

YSlow’s suggestion is to combine the external JavaScript scripts together and the external
stylesheets together, however this conflicts with one of my original goals of having the application
up to Opus’ software development standards. We have used Code Igniter to structure the entire
application in a way that related code is grouped together, but separated from other areas. For
example the JavaScript code for the ArcGIS mapping is separated from the JavaScript code for
Knockout JS. If all the JavaScript code were to be combined into a single script it would be so large
and would contain so much information that it would be significantly more difficult to understand
and it would take a lot of time to find any single area you were interested in. As such | have decided
to stick with the structure that has been implemented. Although it may give a minor hit to the
performance of the web application, it is a necessary sacrifice that should increase the overall
longevity of the application.

Other than the section of “Maker fewer HTTP requests” HazApp has been given A’s all round. Overall
| am very pleased with the grading and | feel as though in its current state its performance is at a
high enough standard to be used without damaging the user experience.

9.2 YSlow Cache Statistics

The screenshot below shows the statistics page of HazApp, unsurprisingly for both the empty cache
and the primed cache JavaScript code takes up the majority. | believe that this is the case as we have
used many different JavaScript APIs/libraries to get the functionality needed to having HazApp
working as intended.

xlv

o Tweet| [Share

F Make fewer HTTP requests
B N Grade F on Make fewer HTTP requests
A Compress components with gzip
; This page has 63 external Javascript scripts. Try combining them into one.
A
Configure entity tags (ETags) This page has 8 external stylesheets. Try combining them into one.
A Reduce the number of DOM elements This page has 9 external background images. Try combining them with CSS sprites.
A Make favicon small and cacheable Decreasing the number of components on a page reduces the number of HTTP requests required to render the page, resulting in faster page loads. Some ways to reduce
the number of components include: combine files, combine multiple scripts into one script, combine multiple €SS files into one style sheet, and use €S5S Sprites and image
A Put CSS at top maps.

Home Grade| Components | Statistics

Statistics 1he page has a total of 109 HTTP requests and a total weight of 4064.6K bytes with empty cache

WEIGHT GRAPHS
Empty Cache HTTP Requests - 109 Primed Cache HTTP Requests - 109
Total Weight - 4064.6K Total Weight - 1841.4K

] 1 HTML/Text 53K] 1 HTML/Text 53K
[63 JavaScript File 2480.0K [63 JavaScript File 1111.1K
| 8 Stylesheet File 335.6K | 8 Stylesheet File 276.1K
] 9 (S5 Image 156.7K] 9 (55 Image 17K
[| 26 Image 566.5K Bl 26 Image 447.1K
| 1 Favicon 16.4K | 1 Favicon 0.0K

1 undefined 503.8K 1 undefined 0.0K

Copyright & 2015 Yahoo! Inc, All rights res=rved,

Figure 31 - YSlow Statistics Overview

xlvi

Chapter 4 — Conclusion

10. Completed Goals

To begin with HazApp was only a simple idea with infinite possibilities. Its one goal was to be an
innovative online hazard reporting system which would eliminate the hassle of current paper based

hazard reporting systems. Before any development had started | worked closely with the team at
Opus to plan out how we would solve this problem. After the long and thorough planning phase (in
which we decided on what HazApp would eventually become and how it would go about doing so) |
made some personal goals which | considered realistically completable within the timeframe | was

given for this project. The overarching goals that | had decided on at the start of our development

phase were as follows:

1.

Create the hazard reporting side of the application and get it running on-line so that it may
be used by real Opus employees - We have already deployed a stable release of HazApp's
reporting side online at https://apps.opus.co.nz/hazapp. Although only a small number of
employees are currently using the system (those participating in the User Acceptance
Testing), it should be very easy to increase the numbers of available users. This is great as

having more users that are using HazApp will increase the numbers of hazards that are
reported and it will increase the awareness of those hazards.

Create the management portal so that the real reported data could be analysed in some way
- While this is only in a basic state at the moment, the management portal still offers what |
consider very useful information on the reported hazards. As more people begin to use
HazApp the information reported will carry more and more weight, to the extent that real
business changes may be based upon the findings. There is a lot of room to expand and
many possibilities for further statistical analysis.

Complete some form of usability study on the working application - While | did not carry out
a full blown usability study, it was still very important to see how users who had used Opus’
paper based hazard reporting system felt about the application we have created to combat
it. This was done through a User Acceptance Test completed by a small group of Geotech
Site Managers. Their input was very interesting and very useful in regards to making
improvements of our current system.

Have all of my development code in a working state in which is up to Opus’ software
development standards. Meaning that any members of the software development team
could continue further development and maintenance on the HazApp after the completion
of my project — This took a lot of work and required me to learn a completely new way of
structuring code. However it was very important for me to do this well and | am happy to say

xlvii

https://apps.opus.co.nz/hazapp

that two software developers at Opus will be continuing work on HazApp after my
completion.

Each one of these points had challenges within itself but | am very happy to say that all four of these
goals have been completed to a standard | am very proud of.

11. Lessons Learned

Throughout this whole process | have come across many challenges and | have also learnt a lot. |
believe that the knowledge and experience gained through this project will definitely help me in the
future as | commence working as a software developer. The most significant lessons | have learned
from this project are:

e Using frameworks and design techniques that real software professionals use in the real
world - Whether or not | will be developing HTML based web applications and/or using any
of the frameworks | have used for this project in my career is unknown, however | believe
that regardless it was a very useful experience. Even if | never use any of these languages or
API’s again the mere exercise of learning new languages and frameworks is useful in itself.
As the IT industry is so fast moving it is a real skill to be able to adapt. One of the most vital
ways to keep up is to be able to learn.

e How to work with a real team of not only software developers, but also business and health
& safety managers - The interactions between the different groups made me realise that to
get the information you want you must be ready to cater communications for each separate
group. Communication is a vitally important aspect of working in the real world, and
understanding how to communicate with different technical skill groups in a company is a
very useful skill.

e Getting a small taste of agile software development and what software development will be
like in a professional setting — Agile software development is common among many IT
industry companies. After getting to work in a semi-agile software development
environment | can see why it is so popular. Being able to quickly change course to best
improve an application seems to me like a very smart and efficient way of developing
systems. There is no doubt that | will be working in some form of an agile team at some
point in my software development career.

e Getting to work closely with a small team of real users undertaking a user acceptance test -
Being able to properly understand your user base is also incredibly important, and whether
or not | will be conducting any forms of usability studies as a software developer, it is always
great to have the end user in mind when developing any system. At the end of the day, if an
application has poor usability or is difficult to understand it will simply not be used. This is
why usability is so important in this line of work.

xlviii

12. Future Work

While | am very pleased with the overall progress of the project and what | have learned from it, it
was always inevitable that due to the scale and freedom of the project there would always be more
that could be done. However with that in mind, Taylor Carnell and Mitchel Bennett at Opus will be
fully taking over the project after my completion and we have discussed their plans on further
development in the coming months.

First and foremost, they will be focussing on filling out the management portal side of HazApp. This
will primarily be through the addition of more statistical analysis functionalities (several of which
have been mentioned in the ‘Data Analysis Using HighCharts’ section). All of these will be used to
highlight any areas of Opus’ business and health & safety practices which may be below standards.
Opus is working towards a safety objective of having a “zero harm workplace” and the management
portal in conjunction with the hazard reporting portal of HazApp will hopefully greatly help the
cause.

Within the management portal there will also be functionality for managers to work on data Quality
Assurance/Quality Control (QA/QC). Which means that managers will be able to observe what other
Opus employees have submitted to evaluate whether it is appropriate and/or whether it is how the
application is intended to be used. Similarly, this may be used as a basis to improve health & safety
trainings.

There are also several minor improvements planned for the hazard reporting side of the application.
These will need to be completed before expansions to a larger user base. Some of the more
important improvements are:

e Offline support for the application, which will be very useful for any employees wishing to
report hazards while working on a project site which may have little to no internet access
capabilities.

e Integrating HazApp with mapping systems regularly used by site managers, which will mean
that they will only have to have one application for all of their managerial needs.

e Further expansion of the hazard type list within the database to match the required health
and safety standards.

e Any additional user interface improvements that may arise through further User Acceptance
Testing.

e Any additional functionalities suggested by users and/or managers which are deemed as
useful.

They will also be continuing to work with small user groups to improve things such as minor bugs
and user interfaces in preparation for a notional rollout. When HazApp is at a completed state that
the business and health & safety managers are happy with, the user base will be expanded to reach
the major cities within New Zealand the eventually all of New Zealand. Assuming the success of
nationwide rollout, HazApp will be considered to be expanded to all Opus bases globally. If this does
go ahead several more refactors may need to be taken into consideration. For example language
boundaries.

xlix

13. Concluding Thoughts

As stated earlier | am very happy with what | have learned and how | have gone about completing
this project. | genuinely believe that the skills and experiences | have gained through this project will
be greatly beneficial as | begin my career as a software developer. | really hope that HazApp will be
completed and fully adopted by Opus so that | may know | have made a positive impact for my work
over the year. Finally, as my project comes to a close | would again like to thank all those that helped
me along the way, the entire experience was truly enjoyable.

Appendix

Item 1 - Simple Hazard Reporting Template

Area/Locality of hazard Date

(Name of person preparing report)

DESCRIPTION OF HAZARD (Include area and task involved, any equipment, tools, people involved.
Use sketches if necessary.)

POSSIBLE REMEDIES (List any suggestions you may have for reducing or eliminating the problem,
e.g. re-design mechanical devices, procedures, training, maintenance work, etc.)

To be submitted to the Manager

ACTION TAKEN

CONTROL IMPLEMENTED & EVALUTATED

Item 2 — Site Hazard ID Risk Assessment Form

OPUS

Daily Hazard ID FORM
for uncontrolled sites

Contract: Site: EXAMPLE
Project Manager: Job Number:
ALARP v . i Medium
As Low As Reasonably Practicable (ALARP) Severity mm Injurylilness
A harzard is an activity event, arrangement or occurrence that can cause Maior lliness ;:';gm :mr;ﬁlhess
Hazard or potentially cause harm to curselves or others this includes a person’s Likelihood Long term disability | 5o ity L
behaviour and/or impact on the environment
Significant hazard means a hazard that is an actual or potential canse or High
Significant Hazard source of Serious harm. If it is identified as a significant hazard you Certain/nearly
must follow control s ELM"". = Eliminate, Isolate, Minimize certain
. Risk in the existing working environment, in the absence of any action Medium
e to control or controls implemented. Likely
*Residunal Risk After the controls have been put in place, factored in, or eliminated. Toepe

Medium Risk is only tolerated if examination proves
them to be ALARP. Implement management plans to
prevent the cccurrence and monitor for changes. Reduce
to Low Risk if the benefits outweigh the cost.

Low Risk is acceptable. Review at next interval.

= Does the
Date Inherent = Control .
“-'h.lt;a:‘l’harm : N 's % HAZARD CONTROLS Mea. - Residual Personorteam | o . oo
e cal:; Rating™ B2 E {How can we reduce personal harm here?) “1::.:' Risk Rating* responsible and date
others? Miminne
H (M Y| N List Control Measures E|I ([M(H| M |L
mehi: le) Heavy | 72arch 2014 < 1 Vehicles to have: . . Lius]t .;n Weskly
ac] § 3 example
ey X + Flashing beacons x e

1 October 2013 Opus International Consultants Ltd

#0nly add/edit harards to this document, do not change any other part of this document withont

prior consent by the HE:S Officer NZ

OPUS Daily Hazard ID FORM
for uncontrolled sites

- Does the
Data Inh t g Comntrol .
‘\-‘hat:)a:‘l’ham 1dentified e_'e:' ‘E 'g % HAZARD CONTROLS Mea - Residual Personorfeam | o . .
? Risk ¥ Stre - - :
= v How can we reduce personal harm here? N Risk Ratin responsible ¥
e Ratng” | 32 % ¢ L) i = and date
others? Feurmiuly
H|M|L|Y|N List Control Measures E(I | M| |H| M L
Warkers hit/ran « Aundible reversing alarm X M company in
= cha
e * Cameras X Ee Weekly
Outcome Fatality 2. 'v'eh.it]e Operator . . 2. Project/Site
* Trained operator & Manager
= Training records available
3. Staffon site: 3. Project/Site Weekly
+ Correct PPE as per site rules x M Manager
* Trained in approach to heavy vehicles
= Training records available
+ Staff onsite not to work or walk while using M
telacommunications devices or listening X
devices (mobile phones, i-pads, i-pods etc)
4. Designated work areas: 4. Project/Site Weekly
* TUnderstand where the no-go zones are b4 Manager
* Stayon designated pathways M
5. Spotters: 5. ProjectSite
IManager N
+ Enow where the spotters are and follow X Weekly
their instructions
6. Barriers: 6. ProjectSite
" e x M Manager
* Hard Plastic Barriers defining site office
work areas, walkways Waskly
L
2 October 2013 Opus International Consultants Ltd

#0nly add/edit hazrards to this document, do not change any other part of this document withont
prior consent by the H&S Officer NZ

Bibliography

[1] Opus International Consultants Limited, “HazApp: The Opus Geospatial Hazard Management
System,” Auckland, 2015.

[2] Cloudsource Limited, “Health and Safety Mobils Apps | ThunderMaps,” 2015. [Online].
Available: https://learn.thundermaps.com/. [Accessed 20 April 2015].

[3] R. Ghatol and Y. Patel, Beginning PhoneGap, New York: Apress Media, 2012.
[4] C.)J. Date and H. Darwen, A Guide To SQL Standard (Vol. 3), Reading: Addison-Wesley, 1997.

[5] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD Record, vol. 39, no. 4, pp. 12-27,
May 2015.

[6] . Farrar, Knockout)S Web Development, Packt Publishing, 2015.

[7] P.B. Darwin and P. Kozlowski, Angular)S web application development, Birmingham: Packt
Publications, 2013.

[8] A.Osmani, Developing Backbone js Applications, O'Reilly Media, Inc., 2013.

[9] B. LeRoux, “Lawnchair simple json storage,” 10 March 2015. [Online]. Available:
http://brian.io/lawnchair/. [Accessed 14 May 2015].

[10] Mozilla, “Local Forage,” April 2015. [Online]. Available: https://mozilla.github.io/localForage/.
[Accessed 14 May 2015].

[11] M. David, Developing websites with JQuery mobile, Taylor & Francis, 2015.

[12] A. Shevchenko, R. Van Baalen, K. D. Moore, A. Levicki and D. Netto, Developing an lonic Edge:
HTMLS5 Cross-Platform Hybrid Apps, Bleeding Edge Press, 2015.

[13] M. Stevenson, Bootstrap: The ultimate beginners guide to Bootstrap 3.0, USA: CreateSpace
Independent Publishing Platform, 2014.

[14] Less, “Less - Getting started,” 2015. [Online]. Available: http://lesscss.org/. [Accessed 26 May
2015].

[15] H. Catlin and M. L. Catlin, Pragmatic Guide to Sass, Pragmatic Bookshelf, 2011.

[16] K. Johnston, J. M. Ver Hoef, K. Krivoruchko and N. Lucas, Usin ArcGIS geostatistical analyst (Vol.
380), Redlands: Esri, 2001.

[17] B. Momjian, PostgreSQL: introduction and concepts (Vol. 192), New York: Addison-Wesley,
2001.

[18] JGraph Limited, “draw.io,” 2015. [Online]. Available: https://www.draw.io/. [Accessed 24 May
2015].

[19] pgAdmin, “pgAdmin - PostgreSQL Tools,” 12 December 2014. [Online]. Available:
http://www.pgadmin.org/. [Accessed 28 May 2015].

[20] M. Hills, Klint P and J. Vinju, “An empirical study of PHP feature usage: a static analysis
perspective,” ISSTA 2013 Proceedings of the 2013 International Symposium on Software Testing
and Analysis. ACM, New York, NY, USA., pp. 325-335, 14 May 2015.

[21] D. D. Dvorski, Installing, configuring, and developing with Xampp, Skills Canada, 2007.

[22] R. Molich and J. Nielsen, “Improving a human-computer dialogue,” Communications of the ACM
33, pp. 338-348, 3 March 1990.

[23] R. Molich and J. Nielsen, “Heuristic evaluation of user interfaces,” Proc. ACM CHI'90 Conf.
Seattle, WA, pp. 249-256, 5 April 1990.

[24] J. Nielsen, “Enhancing the explanatory power of usability heuristics,” Proc. ACM CHI'94
Conference Boston, MA, pp. 152-158, 28 April 1994.

[25] B. Shneiderman and C. Plaisant, “Designing the User Interface: Strategies for Effective Human-
Computer Interaction: Fifth Edition,” Addison-Wesley Publ. Co., Reading, MA, p. 606, 2010.

[26] F. F.-H. Nah, “A study on tolerable waiting time: how long are Web users willing to wait?,”
Behaviour & Information Technology, vol. lll, no. 23, pp. 153-163, 2004.

[27] “YSlow,” October 2015. [Online]. Available: http://yslow.org. [Accessed 20 October 2015].

Ivi

	Abstract
	Figures
	Tables
	Acknowledgements
	1. Project Introduction
	1.1 The Company
	1.2 The Problem
	1.3 Project Goals
	1.4 Related Work
	ThunderMaps

	2. Technologies
	2.1 Programming Language
	Native Mobile App
	Native Desktop App
	Web App
	PhoneGap
	Decision

	2.2 Database Management Language
	SQL
	NoSQL

	2.3 JavaScript Frameworks
	Knockout
	Angular
	Backbone
	Lawnchair
	Local Forage

	2.4 Mobile Web App Frameworks
	JQuery Mobile
	Ionic
	Bootstrap

	2.5 Stylesheet Languages
	Less
	Sass

	2.6 Mapping API
	ArcGIS

	3. Planning and Design
	3.1 Database Design
	3.2 User Interface Design
	3.3 Progress Plan

	4. First Prototype
	4.1 Accessing Database using PHP
	4.2 Creating the Mobile Side Using HTML5
	ArcGIS Mapping
	HTML5 Form Creation
	Hazard Type Input
	Latitude and Longitude Fields
	Calendar Inputs

	5. Second Development Phase
	5.1 Base Application
	Map View
	Information Dialogue
	Hazard Form

	5.2 User Interface Improvements
	Map View
	Information Dialogue
	Hazard Form

	6. UAT Development Phase
	6.1 Correcting the Geolocation Zoom
	6.2 Mobile Specific Functionalities
	6.3 Data Analysis Using HighCharts

	7. Usability
	7.1 Nielsen’s Heuristics
	Match between system and real world
	User control and freedom
	Consistency and standards
	Error prevention
	Recognition rather than recall
	Aesthetics and minimalistic design
	Help users recognize, diagnose, and recover from errors

	7.2 Shneiderman’s Golden Rules
	Offer informative feedback
	Permit easy reversal of actions
	Support internal locus of control
	Reduce short-term memory load

	7.3 User Acceptance Test

	8. Security
	8.1 Database Security
	8.2 User Login

	9. Performance
	9.1 YSlow Grading
	9.2 YSlow Cache Statistics

	10. Completed Goals
	11. Lessons Learned
	12. Future Work
	13. Concluding Thoughts
	Bibliography

