
 

  

 

BTech Project - HazApp 
The Geospatial Hazard Management System 

Rowan Carmichael 
University of Auckland 
June 2015 
 



Abstract 
 

This paper will be following my progress as a fourth year BTech student working with the software 
development team of Opus International Consultants Limited to solve a company-wide problem of 
on-site hazard reporting and management. The idea is a web-based application for desktop, mobile 
and tablets named HazApp, which will function as a geospatial hazard management system. The 
most fundamental challenge of this project is how will I map out, plan, develop, and evaluate an 
entire hazard management application based purely on the idea of a single problem. 

Everything from the highest level of planning for the problem, to the lowest level programming will 
be documented, as well as research and recommendations for the technologies I see best fit for any 
design problems that arise, and any testing that has been to help us complete this project to the 
highest of quality. This report will also cover the results of a usability study as well as several 
heuristic evaluations on the application’s overall usability. 

  

i 
 



Contents 
Abstract .................................................................................................................................................... i 

Figures ..................................................................................................................................................... v 

Tables .................................................................................................................................................... vii 

Acknowledgements .............................................................................................................................. viii 

1. Project Introduction ........................................................................................................................... ix 

1.1 The Company ............................................................................................................................... ix 

1.2 The Problem ................................................................................................................................. ix 

1.3 Project Goals ................................................................................................................................ ix 

1.4 Related Work................................................................................................................................. x 

ThunderMaps .................................................................................................................................. x 

2. Technologies ...................................................................................................................................... xi 

2.1 Programming Language ............................................................................................................... xi 

Native Mobile App ......................................................................................................................... xi 

Native Desktop App ....................................................................................................................... xi 

Web App ....................................................................................................................................... xii 

PhoneGap ...................................................................................................................................... xii 

Decision ......................................................................................................................................... xii 

2.2 Database Management Language............................................................................................... xii 

SQL ............................................................................................................................................... xiii 

NoSQL ........................................................................................................................................... xiii 

2.3 JavaScript Frameworks ................................................................................................................xiv 

Knockout .......................................................................................................................................xiv 

Angular ..........................................................................................................................................xiv 

Backbone .......................................................................................................................................xiv 

Lawnchair ...................................................................................................................................... xv 

Local Forage .................................................................................................................................. xv 

2.4 Mobile Web App Frameworks .................................................................................................... xv 

JQuery Mobile ............................................................................................................................... xv 

Ionic ...............................................................................................................................................xvi 

Bootstrap ......................................................................................................................................xvi 

2.5 Stylesheet Languages ..................................................................................................................xvi 

Less ............................................................................................................................................... xvii 

ii 
 



Sass ............................................................................................................................................... xvii 

2.6 Mapping API ............................................................................................................................... xvii 

ArcGIS ........................................................................................................................................... xvii 

3. Planning and Design ........................................................................................................................ xviii 

3.1 Database Design ........................................................................................................................ xviii 

3.2 User Interface Design .................................................................................................................. xix 

3.3 Progress Plan ................................................................................................................................xx 

4. First Prototype ................................................................................................................................. xxii 

4.1 Accessing Database using PHP ................................................................................................... xxii 

4.2 Creating the Mobile Side Using HTML5 .................................................................................... xxiii 

ArcGIS Mapping .......................................................................................................................... xxiii 

HTML5 Form Creation .................................................................................................................. xxv 

5. Second Development Phase ......................................................................................................... xxviii 

5.1 Base Application ...................................................................................................................... xxviii 

Map View .................................................................................................................................... xxix 

Information Dialogue ................................................................................................................... xxx 

Hazard Form ................................................................................................................................ xxxi 

5.2 User Interface Improvements .................................................................................................. xxxii 

Map View ................................................................................................................................... xxxii 

Information Dialogue ................................................................................................................. xxxii 

Hazard Form .............................................................................................................................. xxxiii 

6. UAT Development Phase .............................................................................................................. xxxiv 

6.1 Correcting the Geolocation Zoom ........................................................................................... xxxiv 

6.2 Mobile Specific Functionalities ................................................................................................ xxxv 

6.3 Data Analysis Using HighCharts .............................................................................................. xxxvi 

7. Usability......................................................................................................................................... xxxix 

7.1 Nielsen’s Heuristics ................................................................................................................. xxxix 

Match between system and real world .................................................................................... xxxix 

User control and freedom ......................................................................................................... xxxix 

Consistency and standards ............................................................................................................ xl 

Error prevention ............................................................................................................................. xl 

Recognition rather than recall ....................................................................................................... xl 

Aesthetics and minimalistic design ................................................................................................ xl 

Help users recognize, diagnose, and recover from errors ............................................................. xl 

iii 
 



7.2 Shneiderman’s Golden Rules ....................................................................................................... xl 

Offer informative feedback ............................................................................................................ xl 

Permit easy reversal of actions ..................................................................................................... xli 

Support internal locus of control .................................................................................................. xli 

Reduce short-term memory load ................................................................................................. xli 

7.3 User Acceptance Test .................................................................................................................. xli 

8. Security ............................................................................................................................................ xlii 

8.1 Database Security ....................................................................................................................... xlii 

8.2 User Login ................................................................................................................................... xliii 

9. Performance..................................................................................................................................... xliv 

9.1 YSlow Grading ............................................................................................................................ xliv 

9.2 YSlow Cache Statistics .................................................................................................................xlv 

10. Completed Goals ........................................................................................................................... xlvii 

11. Lessons Learned ........................................................................................................................... xlviii 

12. Future Work ................................................................................................................................... xlix 

13. Concluding Thoughts ......................................................................................................................... l 

Bibliography ........................................................................................................................................... lv 

 

 

  

iv 
 



Figures 
 
 
Figure 1 - First ERD draft ..................................................................................................................... xviii 
 
Figure 2 - First ERD ................................................................................................................................ xix 
 
Figure 3 - Mobile user interface prototype [1] ......................................................................................xx 
 
Figure 4 - Connecting to the PostgreSQL database using PHP ........................................................... xxiii 
 
Figure 5 - A simple SELECT PHP query ................................................................................................ xxiii 
 
Figure 6 - Basic PHP error handling ..................................................................................................... xxiii 
 
Figure 7 - Basic ArcGIS JavaScript code ............................................................................................... xxiv 
 
Figure 8 - Gray view / Figure 9 - Hybrid view ...................................................................................... xxiv 
 
Figure 10 - Topo view / Figure 11 - Streets view ................................................................................. xxv 
 
Figure 12 - Knockout numeric binding ................................................................................................ xxvi 
 
Figure 13 - Custom Knockout binding for date picker ....................................................................... xxvii 
 
Figure 14 - Date picker user interface ................................................................................................ xxvii 
 
Figure 15 - Map view version 1 ............................................................................................................ xxx 
 
Figure 16 - Hazard dialogue version 1 .................................................................................................. xxx 
 
Figure 17 - Hazard form version 1 ....................................................................................................... xxxi 
 
Figure 18 - Map view version 2 .......................................................................................................... xxxii 
 
Figure 19 - Hazard Information version 2 ......................................................................................... xxxiii 
 
Figure 20 - Hazard Form version 2 .................................................................................................... xxxiv 
 
Figure 21 - Map view with location bookmark feature ..................................................................... xxxv 
 
Figure 22 - Adding photo attachment via smartphone .................................................................... xxxvi 
 

v 
 



Figure 23 - Highcharts analysis of hazard type distribution.............................................................. xxxvi 
 
Figure 24 - Number of hazards reported per day via line chart ...................................................... xxxvii 
 
Figure 25 - Information popup for correctly submitted form ............................................................... xli 
 
Figure 26 - Information popup for submitting an incorrect file to the database ................................. xli 
 
Figure 27 - htaccess login system prompt ........................................................................................... xliii 
 
Figure 28 - html code before login verification ................................................................................... xliv 
 
Figure 29 - html code after login verification ...................................................................................... xliv 
 
Figure 30 - YSlow Performance Review ................................................................................................xlv 
 
Figure 31 - YSlow Statistics Overview .................................................................................................. xlvi 
 

  

vi 
 



Tables 
 
 
Table 1 – Progress plan for first release ............................................................................................... xxi 
  

vii 
 



Acknowledgements 
 

A special thanks to Mano for giving me this wonderful opportunity. Also a massive thank you to the 
Opus team: Kodie Wixon, Taylor Carnell, Sulo Shanmuganathan, Roquito Lim and Mitchel Bennett, 
who have all made this process as equally enjoyable as it is fulfilling. 

 

Dr. Sathiamoorthy Manoharan 

Academic Supervisor 
Senior Lecturer Computer Science - University of Auckland 

 

Kodie Wixon 

Industry Manager 
Senior Software Developer & Software Team Manager - Opus International Consultants 

 

Taylor Carnell 

Industry Supervisor 
Geospacial Software Analyst - Opus International Consultants 

  

viii 
 



Chapter 1 - Planning 
1. Project Introduction 
The HazApp system is a proposed geospatial hazard management system to be used by Opus 
employees and contractors. It will consist of both a mobile app for on-site hazard reporting and real-
time hazard alerts, and a desktop app for statistical analysis and management of hazards. The 
original proposal was an outcome of Opus’ Big Ideas Competition [1] as an improvement to Opus’ 
current paper-based hazard reporting system. 

1.1 The Company 
Opus International Consultants Limited is a multi-disciplinary international consultancy company 
consisting of over 3,000 engineers, designers, planners, researchers and advisors, situated across 5 
countries (New Zealand, Australia, Canada, America, and the United Kingdom). Their work services 
include transport asset development, building design, water, and other infrastructure. Because of 
the nature of their work fields, many Opus employees and contractors working for Opus are very 
often found on work sites (rather than in the office). 

Some of Opus’ more recent projects include, but are not limited to, the Newmarket Rail Station 
redevelopment, Ngatamariki Geothermal Power Plant construction, the Waikato Expressway, and 
the Carterton Events Centre. All of these projects are of massive scale and as such are relatively 
prone to on-site hazards. HazApp hope to minimise the time spent towards reporting and managing 
on-site hazards so that work can continue on the more important aspects of planning and 
construction. 

1.2 The Problem 
Offering professional consultancy services in asset development and management often requires 
Opus employees to be working on-site where if any hazards occur they must be reported and stored 
for management, however the current hazard reporting system is a paper-based form (See Appendix 
Item 1 for a sample hazard reporting sheet) which is tedious to complete, takes time to be 
transferred into a database, and does not offer any advice or alerts to the reporter or anyone else 
working on the same site. 

As well as having an inefficient paper-based hazard reporting system, each different Opus office 
(both nationally and internationally) has a different means of reporting and storing the hazard data. 
This lack of connectivity has misaligned Opus’ safety and business practices and is continuing to 
promote an absence of interconnectivity within the company. 

1.3 Project Goals 
HazApp was created to rectify these problems by both moving the hazard reporting away from 
paper towards utilisation of smartphones and tablets, and realigning databases to make the best use 
of the reported hazard data. Using a mobile map-based hazard reporting not only allows for real-
time hazard reporting and management, it also has room to offer immediate advice and mitigation 

ix 
 



devices to best handle reported hazards. Using a desktop management system with a single global 
database allows for powerful statistical analysis. 

HazApp needs to perform well in areas with and without stable internet connections, it needs to 
have adequate security measures to protect Opus’ data, and it needs to be as user friendly as 
possible (as it will eventually be offered to users of all different technological abilities).  

1.4 Related Work 
Due to the practical nature of this project and the fact that it is a relatively original idea it was 
difficult to find many sources of related work (especially those of academic nature, such as journal 
entries or conferences). However from my research I have come across one application which seems 
to be very similar to what we intend on developing ourselves. I believe it is very important while we 
are still in the early planning stages of the project to seek out similar projects for analysis on what 
they have done, and what we can do better. 

ThunderMaps 
ThunderMaps [2] is a mobile application used to report and manage workplace risks in real time 
much like how HazApp is planning to do. While simply using ThunderMaps to solve our problem may 
seem like a decent and quick solution, there are definitely some drawbacks to simply buying vendor 
software for such a specific problem. The most important benefit of creating an in-house application 
from scratch is that we will have the maximum amount of freedom in terms of design and 
development. Instead of having to try to find the “perfect” software for the problem, or trying to 
find a “close enough” software and asking the vendor to modify it (which can be very expensive and 
time consuming), we can create the application purely based on our needs. This includes getting 
input from knowledgeable sources within the company (such as health and safety managers), as well 
as getting real users to test the application and give us feedback while we develop. This freedom 
also extends to the data itself, by designing and creating an application ourselves we can mould our 
database design around current Opus databases. And finally, as HazApp is planned to eventually 
extend to all Opus employees worldwide (assuming the deployment within New Zealand is a 
success), the scalability and agility to respond to problems is significantly more important. As such it 
will be a necessity to have in-house developers that understand and can react to anything that may 
damage the effectiveness of HazApp. 

The features that ThunderMaps shares with the HazApp idea is location based risk reporting, 
utilising “alert areas” which allows users (for example health and safety managers) to monitor a 
specifically selected area, automatic alerts to staff when they approach a hazard, and some form of 
report generation. However there are some critical differences which separates ThunderMaps and 
HazApp, in particular while ThunderMaps does allow for public and private commenting on a 
particular hazard, it doesn’t have nearly as much depth in its report generation when compared to 
HazApp. [2] The HazApp idea also has a strong focus on generating statistical analysis from all the 
information input into the database, this is a crucial aspect which will aid in the improvement of safe 
business practices. 

x 
 



2. Technologies 
Due to the general complexities and cross-platform nature of the project, HazApp will be heavily 
reliant on technologies if it is to be a success. The discussion following will outline key decisions 
defining how the project is to be made and how it will function. The discussion and ultimate 
decisions will be based on a review of current technologies that are able to fit the required function 
specifications. These will range from development languages, technical application program 
interfaces (APIs), user interface (UI) frameworks, and database systems. 

I will also note that in many of these cases, decisions will not be made until development starts, and 
any decisions that are made here may be subject to change when actual development does 
commence. 

2.1 Programming Language 
Seeing as this project requires both a mobile (smartphone and tablet) and desktop component it is 
crucial to decide on a language (or languages) that accommodate the platforms and functionality of 
the application.  The primary programming languages that I will be considering for this project are; 
native app for mobile (consisting of some/all of Android, iOS, and Windows Phone), native 
application for desktop computer (likely in either C#.net or Java), a web based application (HTML5) 
for both mobile and desktop, or an HTML-built application utilising PhoneGap. 

Native Mobile App 
Perhaps the most obvious solution for the mobile side of this project, native mobile apps allow for 
very powerful functionalities and generally faster speeds for functionalities such as use of GPS 
tracking and photo capturing (when compared to web based applications). Another attractive 
benefit for developing a native mobile app is the ease of use for either offline work or in areas that 
have sporadic network connectivity. This is going to be something that may not be a primary 
decision factor now, but will definitely need to be considered for the completion of this project. 

One big drawback for both forms of native applications, in comparison to a web application, is that if 
the project is ever updated (which will most definitely occur), the native applications will have to be 
manually updated. This is not the case for the web application as all of the updates will occur server-
side so whenever a user goes to the web page it will be showing the most updated version. Along 
with having to update the application where necessary, both native apps require disk space on the 
device being used. While this may not be an issue for a desktop computer, it is something we have 
to keep in mind for mobile devices with limited storage space. 

Unfortunately another major drawback of creating a native mobile app is that it would likely like 
more than one language codebase (as some combination of Android, iOS, and Windows Phone) for 
the mobile side alone. Taking into considerations the limitations of time, expertise, and money we 
have decided that a native mobile app approach would not suit what we hope to achieve. 

Native Desktop App 
Similar to native mobile apps, a native desktop application can offer increased speed and 
functionality in comparison to a web application. However it also shares the same drawback of 
requiring separate code bases for both the mobile and desktop sides. With this in mind it is clear 

xi 
 



that the two options we could take in terms of coding languages are either a native mobile app and a 
native desktop app, or a web app for both mobile and desktop. 

Web App 
The limitations of web applications compared to native mobile and desktop applications somewhat 
numerous, however due to the relatively simple functionality of the project, we feel as though a 
HTML5 web application using JavaScript would more than suffice the primary needed functionality 
of mapping, geolocation tracking, photo/video capturing, and connectivity to a server side database. 

As mentioned earlier, having some functionality for offline use or intermittent internet connectivity 
needs to be considered. Fortunately there are options utilising HTML5 and JavaScript which allow for 
such functionalities. The possible solutions to this problem will be assessed later. 

Finally, using a HTML5 web based application will allow for a lot of code sharing between the mobile 
and desktop application. This is an incredibly attractive trait of web applications and is a main 
contributor to why we have ultimately chosen to develop a web application in HTML5, utilising 
JavaScript APIs, and a PHP database. 

PhoneGap 
PhoneGap is a special case that we will be also looking into specifically for the mobile and tablet side 
of our project. In terms of development it should be exactly the same as a web application using 
HTML5, CSS, and JavaScript. However it differs in how it is deployed, instead of being a web based 
application PhoneGap would allow for out HTML/CSS/JavaScript codebase to be converted into 
native mobile applications for Android, iOS, and Windows Phone. This would eliminate the problem 
of having multiple code bases for each different device type and could also allow for better local 
storage on the device for offline or poor-connection usage. While in theory this sounds great it may 
not be as easy to include such functionalities. [3] 

Although this seems like a good middle ground decision it does not come without its own faults. The 
most glaring problem that would most likely arise is decreased performance compared to a regular 
native application or a web based application. From what has been suggested from some of the 
other Opus developers, PhoneGap may not be the best choice if we are interested in having decent 
performance speeds from out application. From what I have gathered PhoneGap’s conversion comes 
with a cost, and seeing as it is important for our app to function fast enough as to not have a 
negative impact on the user’s view of the app, PhoneGap may not be the most obvious choice. 

Decision 
Due to the very small size of our development team and the large size of the project itself we have 
decided that we will be developing using HTML5 for both the desktop and mobile/tablet side of the 
application. As mentioned earlier HTML5 comes with more than enough functionalities to 
accommodate the project requirements and by ch0osing HTML5 we will be able to share a decent 
amount of code between the two sides of the application. 

2.2 Database Management Language 
One of the key inspirations for this project was to connect the entire Opus community through a 
global database system, as such the decision for the database management language is very 
important to the longevity of the project. As discussed earlier we are going to be creating a HTML5 

xii 
 



based web application and as such we will be using PHP to connect client and server databases. In 
terms of database implementations we will be looking into two of the most popular options being a 
regular SQL database and a NoSQL database. 

SQL 
SQL (structured query language) databases have been around for many years, with their first 
appearance in 1974 and initial release in 1986 and as such have been the dominating framework for 
databases up to present day. The biggest difference between SQL and NoSQL is that SQL databases 
are primarily relational databases utilising tables containing data fitted into predefined categories. 
While SQL has been around significantly longer than NoSQL it does come with its limitations. The 
major limitations to note are scalability and complexity. As SQL uses relational databases scaling the 
size of a database is an expensive and difficult task which requires powerful servers. The other major 
drawback as compared to NoSQL databases is the complexity of relationships within the database. 
SQL requires a network of tables all connected through some means of relationship strings. An 
implication of this is that altering the design of the database structure can be very complex and can 
downright break your database (especially in the case of deleting data/tables).  

One benefit that regular SQL databases have over NoSQL databases is that, for complex queries, SQL 
offers standard interfaces aiding in working with such queries. In general SQL databases are best fit 
for heavy duty transactional type applications, the reason being is that they offer more stability and 
promise atomicity as well as integrity of the data. This is emphasised through SQL’s ACID properties 
(Atomicity, Consistency, Isolation and Durability). The HazApp project will be including some form of 
transactions (most likely on the management side of the application) so the benefit of stability and 
atomicity will be kept in mind. 

Finally the last advantage to note that SQL has over NoSQL is that, as it has been around for so much 
longer, SQL offers excellent support for their databases from vendors. Whereas NoSQL largely has to 
rely on community support. [4] 

NoSQL 
NoSQL databases have surged in popularity since their release in 1998. The aim of NoSQL was to 
move away from the idea of concrete relational tables for a more flexible framework. NoSQL 
databases focus more on key-value pairs, no longer requiring fixed table schemas and relational join 
operations. They have traded off the ACID properties for Brewer’s CAP (Consistency, Availability, 
Partition tolerance) theorem. 

One of the bigger positives NoSQL has over has over regular SQL is that no schema are required. 
That is to say data can be inserted into a database without having to define a rigid database schema. 
This also allows the format of the data being inserted to be changed at any time without application 
disruption, leading to massive application flexibility. In general NoSQL databases process data faster 
than relational databases as their data models are more flexible and often simpler. [5] 

While both SQL and NoSQL databases have their own differences and benefits, we are yet to make a 
decision on what database type we will be implementing. This decision will be made closer to 
development start. 

xiii 
 



2.3 JavaScript Frameworks 
Selecting appropriate JavaScript frameworks can greatly reduce the need for tedious manual 
calculations. Essentially what we are looking for in a JavaScript framework is functionalities which 
will aid help with manipulation of the webpage’s data through things such as functions and bindings. 
In this case we will not necessarily be settling for a single JavaScript framework, but instead we may 
use several in different areas which we see fit. For general JavaScript we will be considering 
Knockout.js, Angular.js and Backbone.js. This decision will likely be influenced by how the JavaScript 
framework combined with the web app framework.  For offline storage functionalities we will be 
looking at Lawnchair and Local Forage. 

Knockout 
While Knockout, AngularJS, and Backbone all offer some of the same very useful functionalities that 
regular JavaScript does not naturally support (such as data binding and DOM templating of code into 
smaller maintainable pieces), Knockout is different as it is primarily a lightweight data-binding 
library. Unlike AngularJS it has explicitly put work towards focusing on unobtrusive code, which 
could be important for our project. While at times each of these three frameworks may outperform 
the others in terms of performance speed, Knockout has a stronger focus on speed and should offer 
better performance than the other two for common tasks that we will be implementing. [6] 

Angular 
Angular is different to both Knockout and Backbone as it is a full-fledged framework (rather than a 
lightweight one). It has be built from testability and as such of this can clear project organisation 
more effectively that the other two alternatives. It is the “heaviest” of the three frameworks, and 
because of this it can offer more luxury functionalities such as custom elements. It is difficult to say 
whether or not these extra functionalities will be of any benefit without having started development 
yet. [7] 

Backbone 
More similar to Knockout, Backbone is a lightweight JavaScript framework and as such in general it 
will also perform better that AngularJS in terms of speed. Unfortunately this comes at a cost; while 
Backbone excels in simple applications, it may fall behind when dealing with heavy built-in data 
interactivity or extensive scaling. As mentioned earlier, it is difficult to tell which of these 
frameworks will suit out problem, although in terms of the mobile side of the application we are 
going to try and make it as simple as possible so both Knockout and Backbone may have the slight 
edge at the moment. It is going to be our job when we start developing to identify and handle the 
balancing act between these frameworks. [8] 

With all of this in mind I will conclude that all of these frameworks essentially are solving the same 
problems. There are small differences between the functionalities and syntax between the three but 
ultimately any of these frameworks seem as though they would adequately work for our project. 
While this decision is still undecided, it will probably be influenced by more specific problems we 
encounter while actually developing. If any one framework can manage a specific problem better 
than the others, it will most likely be the one we use, however that will be judged on a case-by-case 
basis. 

xiv 
 



Lawnchair 
Again Lawnchair and Local Forage share the same roll of maintaining data offline. Although we are 
still in a very early stage of planning and offline data management is rather low on our priority list I 
still thought it would be beneficial to review two of the most popular options for local HTML5 
storage using json. 

Lawnchair has been designed with mobile in mind, which is great to hear as the mobile hazard 
reporting side of our project is where we will be wanting offline support. It has a few very simple but 
powerful functionalities which cover the basis of offline data storage. These include mapping key-
value pairs, saving them to a local “store”, and accessing them later. Unlike Local Forage, Lawnchair 
has stopped releasing new builds and has been “finished” as a project. This means that as time goes 
on it most likely will fall further and further behind the regularly updated Local Forage. [9] 

Local Forage 
Mozilla’s Local Forage seems to be a more complete solution to the problem of local storage for 
HTML5. It shares a similar methodology of saving and retrieving data as Lawnchair, but it also offers 
built in error handling. This essentially means it is slightly more complex but covers lightly more 
functionality than Lawnchair. As mentioned earlier it is continually updated and from what I have 
gathered has far more extensive documentation and support. [10] 

At this time in our research, offering offline storage functionalities has one of the lowest priorities 
and will probably not be mentioned again until we are nearing our final release. 

2.4 Mobile Web App Frameworks 
The web app frameworks we will be deciding to use will primarily be based on user interface and 
ease of use. With this in mind we will only be looking at a select few (although there are a numerous 
amount of potential contenders) that we deem most likely to fit our needs. We will consider JQuery 
Mobile, Ionic Review, and Bootstrap. 

JQuery Mobile 
JQuery Mobile is a very well know and very popular choice for HTML5/CSS/JavaScript development 
for smart phones and tablets. It is a very easy to use framework that does a lot of useful work for 
you (especially in terms of automatically generated user interfaces). It is such a popular choice for 
smart phones and tablets as it includes a very clever built in scaling system so that you program can 
easily be transferable between many different screen sizes. In essence JQuery Mobile is a 
minimalistic upgrade to JQuery designed for responsive web pages and platform independent 
applications. 

Another great benefit of JQuery Mobile is that seeing as it is so simple, it is incredibly easy to extend 
further JavaScript libraries. As such it should be able to fit well with any of the JavaScript frameworks 
discussed above. As well as working great for mobile devices JQuery Mobile also offers smart designs 
and implementations on desktop applications. This may come into our decision making process as it 
is important to have coherency between out mobile and desktop application which can be boosted 
by having a similar user interface style for both. 

The final benefit that JQuery Mobile which is very attractive for our project is the fact that it offers a 
lot of mobile-specific function handling such as swipe-events, page transitions and touch-friendly 

xv 
 



components. However while it does offer a lot of useful functions it can be have very slow 
performance, especially if the application is not designed properly. [11] 

Ionic 
The Ionic framework is the most recently created web app framework we will be considering, with 
the alpha release in November 2013. Similar to JQuery Mobile, Ionic Review primarily focusses on 
the user interface, however it differs in the fact that it is built on top of Google’s AngularJS 
framework. This pairing is a necessity for Ionic to function to its fullest potential so if we were to 
choose it we would also have to be working with AngularJS. 

Another similarity Ionic shares with JQuery Mobile is having a strong focus on responsive web 
design, which is a big plus. We will be wanting to have our application provide optimal viewing and 
interaction experience, as well as quick and easy navigation, and the ability to function on a wide 
variety of devices. By utilising a responsive web design to its maximum potential, we should be able 
to share a lot of code between out desktop and mobile applications. [12] 

Bootstrap 
Bootstrap is a front-end framework which also offers a number of great user interface components 
such as dropdowns, breadcrumb navigations, and button groups. Unlike JQuery Mobile, it has not 
been designed to primarily focus on mobile applications and as such seems to have the appearance 
of a desktop application (even when on a smartphone screen). To fix this, custom code would be 
necessary. As it is less dependent of JQuery, it generally will exhibit better performance. [13] 

While we will be developing for both mobile and desktop we are yet to decide if we will use any of 
these frameworks for both sides of the application or if we will divide our application by using 
different frameworks for the two sizes (for example JQuery Mobile for the mobile/tablet side, and 
Bootstrap for the desktop side).  

2.5 Stylesheet Languages 
 While not a major priority for the project, utilising an effective stylesheet language that can be 
compiled into CSS, can make the CSS code easier to understand and simpler to create. The two big 
names in this area that we will be considering are Less and Sass. It should be noted that while we will 
be considering both, we may end up not using either and just stick to regular CSS. 

Both Less and Sass share a lot of syntax and functionalities, and are essentially attempting to solve 
the same problem of decreasing the amount of code needed for stylesheets through added 
functionalities. These include but are not limited to: 

• Mixins: which allow embedding of properties of a class into other classes, creating a soft of 
variable which can be repeatedly used. 

• Parametric Mixins: act as functions by allowing passing of parameters 
• Nesting: similar to a nesting in a language like Java, cuts down on repetitive code 
• Functions and Operators: allows for mathematical equations within your CSS code (for 

example taking a colour variable and making it slightly darker by adding to the RGB value) 
• Namespaces: which are groups of styles that can be called by references (rather than 

requiring several CSS files) 

xvi 
 



Less 
While both Less and Sass are pre-processors for CSS, Less has been greatly influenced by Sass. This is 
very apparent in the shared functionalities of the two. One difference between the two is that Less is 
a JavaScript library and is processed client-side. Being a JavaScript library it is incredibly easy to 
incorporate into a web based application. All that is needed is two extra lines of code in the HTML 
file, one referring to the .less file and one referring the less.js file. [14] 

Sass 
As stated earlier the one significant difference between Less and Sass is that Sass is not a JavaScript 
library, it instead uses Ruby. However it seems as though this is not a big deal at all as if I were to 
develop using either of these frameworks I wold have to be learning new syntax anyway. [15] 

It seems as though if we do decide to use either of these frameworks it will most likely come down 
to personal preference as the differences between the two seem to be minimal. However we will 
probably be ignoring these for the start of our development as we will be wanting to only focus on 
the most necessary functionalities. 

2.6 Mapping API 
It is of immense importance to get the mapping technology that will best suit our project. The 
primary properties we will need from our mapping API is an attractive interface, capabilities to 
effectively send user input to, and retrieve and map data from a server’s database. We would also 
really like to have easy and flexible movement options for the user (in particular moving the map 
location and zooming), and a fast overall performance. Although the mapping API ArcGIS has already 
been chosen by Opus for this project (as for all mapping-based projects within Opus ArcGIS has been 
used) I will still review this API in hope that I will gain a better understanding on how I will end up 
developing with it. 

ArcGIS 
The ArcGIS engine allows for adding dynamic mapping and geographic information system (GIS) 
capabilities to both existing applications and custom built mapping applications. Some very useful 
features include creating custom and prebuilt drawing/graphics features, such as points, lines, and 
polygons. These graphical features are not just for show, ArcGIS offers powerful manipulation and 
geographic operations on these shapes, such as calculating differences, finding intersections, and 
even assigning points on a map to database objects. This is exactly the kind of functionality we are 
looking for in our HazApp project. As well as the interfacing side of the mapping technology, ArcGIS 
also offers network analysis which is another crucial part to the success of our project. All this is very 
well documented and there are many demos on their site which will most definitely speed up my 
learning process as so far I have had no exposure to ArcGIS. [16] 

In terms of the visuals of the mapping, ArcGIS seems to offer an abundance of choices. Again this is a 
massive positive as we can customise how the map looks to best represent the data, and maximise 
the ease of use for users. I will be reviewing some of the more specific visualisation options later in 
the planning phase. 

xvii 
 



3. Planning and Design 
Now that the majority of decisions have been made on the technologies we will be using to 
construct HazApp we now have the opportunity to move onto planning specifics of the project. 
Again, seeing as we are at an early stage in development, it is very important to create a sound 
foundation before development starts. Our planning and design phase will cover the underlying 
database design, a basic user interface design, and an initial plan for our development phase. 

It should be noted that while we are still only in the planning and design phase any decisions made 
here are subject to change. 

3.1 Database Design 
The decision has been made for this project to be implemented using a PostgreSQL database [17]. 
The reason we have chosen to go with a more typical SQL database rather than a NoSQL database is 
due to the relational nature of the data we will be storing. The figure below shows our first ERD 
(Entity Relationship Diagram) including the fundamental tables, attributes, and relations. 

To begin the planning we started with mapping the most important entity in our database: the 
Hazards. From this we expanded the database outwards, keeping in mind the relationships that 
would follow the new tables. The most important tables that we identified were: Hazards, Projects, 
Users, Lookups, Attachments, User_history, and Sync_history. While the Hazards, Projects, and 
Users tables are fairly self-explanatory, I will be briefly covering a few of the details of the less 
obvious tables. To start, the Lookups table is to help define and categorise specific hazards. Also 
closely related to the Hazards table is the Attachments table, this is to be used for linking 
photos/videos with reported hazards. And finally, User_history and Sync_history are there to offer 
some form of documentation on users and to help synchronising the database (for example in times 
of a lack of internet connectivity). 

 

Figure 1 - First ERD draft 

As this was our very first draft of the database design there was a lot of room for change. Through 
several iterations of reviewing the ERD we finalised the design (as shown below) with several 
changes. These include but are not limited to the addition of attribute variables, further defining the 

xviii 
 



relationships (as well as the relationship types), and the addition of new relational tables (in this case 
the table User_project which is used to resolve the many-to-many relationship between the User 
and Project tables). 

 

Figure 2 - First ERD 

This ERD represents the basis of our database for the first implementation of our project. After 
creating it and going through several iterations (using draw.io [18]), we have now converted this 
design into a PostgreSQL database using pgAdmin 3 [19]. This allows us to quickly and easily edit the 
database through a simple interface, and it also has allowed me to set up a local version of the 
database on my machine (for testing purposes). 

3.2 User Interface Design 
The user interface is not the highest priority at the moment, however it is important to create an 
easy to use interface that the first testers (Opus employees) will be able to understand and use 
effectively. For our first prototype not much time will be allocated into making the user interface 
look “nice.” This time will instead be put towards the primary functionalities of the application. With 
that being said, the first prototype will ultimately be used by a group of Opus employees, and as 
such we don’t want the user interface to have any negative connotation due to the way it looks. It 
should be as simple and clean as possible. 

The following figures are mock ups created at the very first idea proposal stage and were used as a 
tool to aid HazApp’s application process. While they are slightly dated and a lot has changed since 
my involvement in the project, I will be using these as a very rough template for the user interface 
design I will be working on. 

xix 
 



 

Figure 3 - Mobile user interface prototype [1] 

I really like the idea of having a full screen map view that showing the local area’s project sites and 
hazards. Due to the limited screen sizes of mobiles, maximising the efficiency of space by minimising 
the amount of unneeded clutter is a must. Similar to the above figure I will also include a small 
hazard form popup that will take up about half a screen when someone wishes to view or log a 
hazard. This should still leave enough room for the user to accurately select the correct area on the 
map. 

3.3 Progress Plan 
With a more concrete game plan forming we are now working on a scheduled plan for the first 
release of the mobile and desktop application. The table below is our finalised development plan for 
this stage. It should be noted that this plan covers all aspects project and there will be some areas 
that I will not be directly involved in (mainly the desktop side of the application). This is primarily to 
allow me to focus purely on the mobile side of the application. In terms of general development the 
areas that are of critical importance to me are the database design (which will be implemented as a 
PostgreSQL database), accessing the database and performing simple CRUD (Create, Read, Update 
and Delete) operations using PHP, the ability to add hazards to the database using a mobile interface 
I will be creating (this should also incorporate the mapping technology ArcGIS), and the ability to 
retrieve all local hazards from the database and display them via the ArcGIS map on the mobile 
application. 

 Type Feature Description 
Iteration 
(Week) 

Due 
Date 

 Design Stage Database Design database (ERD) 0 
28th 
April 

 
Project 
Initiation Planning Low level task assignment and plan 0 

29th 
April 

 
First Release 
Dev Database Setup dev, uat databases with Postgis 0 6th May 

 
First Release 
Dev Database Implement database 1 

13th 
May 

xx 
 



 
First Release 
Dev Base Application Base CI app with required libraries etc 1 

13th 
May 

 
First Release 
Dev Base Application Mapping requirements 2 

20th 
May 

 
First Release 
Dev Base Application Theme, styling, look / feel. mock pages 2 

20th 
May 

 
First Release 
Dev 

Adding a Hazard 
on Desktop CRUD for hazards 3 

27th 
May 

 
First Release 
Dev Hazard List 

Prepare a list of the hazards in the system, with an 
ability to search and query 3 

27th 
May 

 
First Release 
Dev Base Application Configure to authenticate with AD 4 3rd June 

 
First Release 
Dev 

Base Mobile 
Application Base app setup for the HTML5 WebApps 4 3rd June 

 
First Release 
Dev 

Mobile App Add 
Hazards Ability to add hazards on the mobile interface 5 

10th 
June 

 
First Release 
Dev 

Mobile App View 
Hazards 

Ability to view all hazards on the mobile device 
(using GPS as well) 5 

10th 
June 

 
First Release 
Dev Hazard Map 

Map view of all hazards with the additional of other 
spatial queries 6 

17th 
June 

 
First Release 
Admin UAT Feedback 

To prepare users for UAT and any adjustments 
before commencing full pilot 7 

24th 
June 

Table 1 – Progress plan for first release 

As seen in the table above, the final due date we are aiming for (at least for our initial prototype) is 
the 24th of June. At this point we hope to have a working desktop and mobile application that can be 
tested in a real world environment by a small group of Opus employees. As it is the first prototype 
we will only be focussing on the most important aspects of the application that we deem necessary. 
This means we will not be implementing functions such as offline use or statistical visualisations until 
a later release. Assuming all goes well the first prototype will be the most important part of the 
project so far. It will enable us to truly see if the idea is viable, and it will definitely highlight aspects 
that are weak in the design. 

 

 
  

xxi 
 



Chapter 2 - 
Development 
4. First Prototype 
After the successful completion of our planning phases we will now be beginning the development 
on our first prototype. As mentioned in the project plan, I will primarily be focussing my 
development on the mobile side of the project, and as such this chapter will be following 
development from my point of view. Throughout this chapter I will be making reference to the 
desktop side of the project however my involvement in that part of the project may be limited for 
the time being. 

The first working prototype will be due at the end of June. By then I hope to have the mobile 
application accessing the database servers and preforming simple CRUD operations for hazards, a 
basic form for adding hazards, and utilisation of the ArcGIS mapping technology which will show 
localised hazards and have some functionality for reporting of hazards through a geospatial 
navigation interface. 

As this is only the first prototype and we have a limited time frame before the first iteration of user 
testing commences, several “luxuries” will be left out depending on time. As mentioned earlier we 
will not be bothering applying any functionality for offline testing at this stage and I will most likely 
not be spending a lot of time on the user interface and other things like fancy transitions between 
screens. As such I will probably be ignoring the mobile web app frameworks, stylesheet languages, 
and will only be using JavaScript frameworks where absolutely necessary. 

It should be noted that due to a differential between the submission time for this report and the 
time for our first application testing phase, several of the above features may not be completed by 
the time this report is completed. With this in mind the final area in this report will summarise what 
will be completed in the coming days (leading towards the first deployment). 

4.1 Accessing Database using PHP 
While I have had some experience with HTML, JavaScript and CSS, this is my first exposure to PHP 
programming. Fortunately I have also had some experience with SQL databases and the functions of 
such databases. Because of this PHP for database management felt very familiar, and no real 
difficulties were encountered when trying out the basic CRUD operations. One minor setback I did 
encounter was when trying to access the database tables. At first I did not realise that when using 
PostgreSQL queries in PHP, all table names in single quotations were automatically converted to 
lower case. This essentially meant my PHP code was not recognising any of the tables in my queries 
(as they were defined in the database with a capital first letter, for example ‘Hazards’). After some 
minor confusion I contacted one of the PHP experts at Opus who informed me of the problem, and a 

xxii 
 



few solutions. One being changing the table names in the database to be all lower case, and the 
other to slightly alter my queries to include an extra set of quotations around the table name so that 
it keeps its case. 

I have included below the two most important aspects of using PHP to access the database; creating 
a connection to the database, and defining a query (in this case a simply lookup). [20] 

$db = pg_connect("host=localhost port=5432 dbname=postgres 
user=postgres password=password") 

Figure 4 - Connecting to the PostgreSQL database using PHP 

If you notice in the above code I have set the host to localhost, I have done this as while we are yet 
to deploy our first version, I have been testing my code using a localised copied version of the 
database. To access the database through the localhost on my computer I have used the free 
database connection program XAMPP [21] which opens specific connection modules such as Apache 
or MySQL. When we release the first version of our applications to some Opus testing staff I will 
instead be connecting to a server database created by the company. 

$query = 'SELECT * FROM hazards;  
$result = pg_query($query) 

Figure 5 - A simple SELECT PHP query 

This PHP query is the most simple of queries, all it does is get all of the entries in the ‘hazards’ table 
and stores them in a result. For testing purposes I continued this followed this code with a few 
simple echo statements to view the data. 

For purposes of error handling and safety I have also included catches to handle and display any 
errors that may occur while either connecting to the database or querying the database. Again this is 
very simple to do but it holds massive benefits in terms of resolving errors in the early development 
stages. This is done within a single line that follows either an attempted connection or query (as 
seen below): 

or die("Error: ".pg_last_error()); 

Figure 6 - Basic PHP error handling 

 

4.2 Creating the Mobile Side Using HTML5 
The second piece of the mobile prototype is the actual HTML5 application, it will essentially be the 
interface between the user, the map, and the database. Due to its complex nature I have separated 
this task into 4 smaller subtasks. These are; the ArcGIS map, the HTML5 form, adding hazards to the 
database via the HTML5 form and a PHP connection, and retrieving and displaying local hazards from 
the database onto the map. 

ArcGIS Mapping 
While I have had some experience using enterprise mapping API’s (in particular Google Maps), this is 
my first experience using Esri’s ArcGIS mapping technologies. As such I have had to put in quite a lot 
of time towards learning the API as there are a lot of different functionalities that I will have to be 
utilising to effectively solve the problems. To start, I simply tried to get a map displayed within my 

xxiii 
 



testing browser. This was done purely using JavaScript and some of Esri’s libraries [16]. The code 
snippet I have included below is the most basic of maps which is located above Auckland city.  

 require(["esri/map", "dojo/domReady!"], function(Map) { 
   var map = new Map("map", { 
     center: [-174.7400, 36.8406], 
     zoom: 8, 
     basemap: "topo" 
   }); 
 }); 
   Figure 7 - Basic ArcGIS JavaScript code 

The most important aspect to using ArcGIS through JavaScript is the first line of the above code. The 
‘require’ keyword defines what libraries are to be downloaded from Esri as well as the functions 
that will operate on the given map. This can be expanded immensely to cater for all different 
functionalities used by the ArcGIS map. 

The first functionality that I have decided to add is the ability to zoom to the current device’s 
location (using Geolocation to get a latitude and longitude value). The reason I have prioritised this 
functionality so highly is because even for this first prototype, the users will be wanting to log 
hazards using their mobile devices while on work-sites. By allowing them to automatically zoom the 
map to their current location by the click of a button, Opus employees will be able to quickly locate 
the area where they wish to report a hazard and can easily view all hazards in the local area (to be 
completed later). 

In terms of the map style I want to have something that is clean and not overly complicated, but also 
shows enough detail of streets, building groups, and environmental areas to not only be visually 
appealing, but also practically useful. 

Below are a few of the alternative map styles I have considered. While there are many more map 
styles available (both created by Esri and created open source), these were the four that I found to 
best fit the design requirements. 

       

Figure 8 - Gray view                                 Figure 9 - Hybrid view 

xxiv 
 



        

Figure 10 - Topo view                                                                                            Figure 11 - Streets view 

My decision was narrowed down to either the ‘streets’ view or the ‘topo’ view. Both ultimately 
function very similar but have slight differences that I have used in my decision making process. The 
‘streets’ view offers more detail of roads; it has several different shade to categorise the different 
types of roads (for example the darkest road in the above image is State Highway 1). Whereas the 
‘topo’ view does not focus so heavily on the roads (although it does show them in adequate detail), 
instead it offers better visualisations of building areas. In the above image it is clear what area is 
more residential (the left half) and what area has a higher density of larger commercial buildings 
(the right half). While both the ‘streets’ view and the ‘topo’ view have only minor differences, I have 
decided to go with the ‘topo’ view as I believe it gives enough detail of roads, it is clean and easy to 
look at, and the building density shading system will be massively beneficial to users when locating 
particular work sites. 

HTML5 Form Creation 
The form view for HazApp is vitally important to the project as with a broken or unusable form, no 
data may be logged, therefore the very core idea of HazApp won’t be able to function. While there 
are several aspects to the form view already, below I will be covering the most important areas and 
those which I had the most difficulty with. 

Hazard Type Input 
Crucial to reporting hazards is the form detailing the specifics of a given hazard. I will be reducing the 
possible inputs to only those I consider a necessity. First and foremost is a hazard categorisation 
input, which will give the option to choose a pre-set hazard type. The hazard categorisation input is 
based off the databases Hazard Type Lookup table. The reason we have decided not to allow users 
to input a custom hazard type is that the hazard type list needs to be up to Opus’ health and safety 
standards. As such users should only be able to select hazard types of an approved list. Another 
benefit from having a fully defined hazard type list to choose from is that statistical analysis will be 
far easier to process and far clearer to understand, and it will also open avenues for things such as 
symbol filtering on the map view (which may be implemented later). Fortunately the selectable 
inputs will be easily modifiable in the future as all that is necessary is the addition of a new column 
into the PostgreSQL database. 

Latitude and Longitude Fields 
This will be followed by the location (latitude and longitude) of the current hazard, which will either 
take the values from the area selected on the map or another value directly input by the user. 
Seeing as the latitude and longitude fields are currently editable (this may be changed later down 

xxv 
 



the track), It is very important at this stage to make sure that they have the correct input validation 
as any malformed input will make that particular hazard unusable in the database. To do this I have 
used a Knockout binding. This particular Knockout binding limits the potential input keys available to 
the user when they have the latitude or longitude field. As seen below, it only allows the simple 
editable inputs (such as backspace, delete and enter), and the numerical inputs (including negative 
numbers as well as decimal points). 

 

Figure 12 - Knockout numeric binding 

This binding is then simply applied to both the latitude and longitude fields by including:  
    data-bind= "numeric” 

within the input tag. 

Calendar Inputs 
It is very important from a usability point of view to offer some form of date picker for the calendar 
inputs (start date and end date). While HTML5 does offer a very simple and easily implementable 
date picker via: 
    input type= "date" 

it unfortunately is not supported in Opus’ company standard browser (Internet Explorer 10). As such 
I have had to find another option for a date picker. 

I have decided to go with JQuery UI’s date picker which can be implemented and modified using 
Knockout. As seen in the code snippet below, I have decided to use two primary functions within the 
date picker; ‘init’ (to initialise the date picker itself as well as set the current date for the start date 
field) and ‘update’ (in the event that the user wishes to input/change a new date). 

xxvi 
 



 

Figure 13 - Custom Knockout binding for date picker 

As demonstrated in the picture below, a user simply selects the date field (in this case the active 
date) and the date picker appears below. Then instead of having to input the date numerically they 
can simple select the desired date on the popup calendar. I believe this makes the date selection 
task significantly easier for the user, and it also negates any need for custom input validation as the 
user cannot directly manipulate the input via keyboard. 

 

Figure 14 - Date picker user interface 

 

xxvii 
 



5. Second Development Phase 
After successfully completing the first prototype many ideas have been refactored, most importantly 
the desktop and mobile side for the hazard reporting has been decided to merge into a single 
application. This combined application will primarily be targeting the screen resolution of mobile 
tablets as this is what Opus’ hazard site managers will most often be using. With that in mind, we 
will also have to cater for both larger screens (i.e. desktop computers) and significantly smaller 
screens (i.e. mobile phones). As such we will be primarily be utilising Bootstrap’s functionality of 
auto adjusting widgets to create a responsive web design. 

To stay within Opus’ software development standards we will now be managing our code base using 
CodeIgniter, which is an open source web application development framework used in building 
dynamic sites with PHP. This means that rather than having a few colossal code bases such as a 
single html file, one CSS file, and one JavaScript file, we instead split the development areas into 
better defined and more manageable parts. For example we will be having a separate file for the 
ArcGIS mapping JavaScript, the Bootstrap JavaScript, and the main JavaScript (which includes 
Knockout). While this has been a challenge adjusting to, it ensures that after I have completed this 
project the application will be up to Opus’ software standards and as such will still be able to be 
maintained and updated by any of Opus’ software developers. 

This next area will be covering the finalised development of the hazard reporting side of the 
application as I will be expanding on the ideas and techniques used for the first prototype. It will be 
highlighting all significant points we have faced all the way from the base application to the final 
product.   

 

5.1 Base Application 
Getting the base application up and working holds the greatest of importance at the current stage. 
While we will not be using the first prototype as a skeleton for further development, many of the 
techniques and concepts gained by creating the prototype will likely prove invaluable for this next 
stage. It should have the core functionality working before we develop any of the more intricate 
functionalities. The core functions needed include: 

• Having a map view which shows all of the current hazards in the given area (the hazards and 
their information will be pulled from the PostgreSQL database and superimposed on the 
ArcGIS map). 

• Having functionality to select a particular hazard on the map view to identify its specific 
information (for example the hazard type, severity, description, when it was logged and who 
by). 

• Having functionality to add a new hazard to a specific area on the map view by clicking on 
the chosen location. 

• When adding a new hazard, a hazard form needs to appear which will allow the user to log 
the additional information about the hazard. 

• Some simple form validation so that incorrect data (which could potentially break the 
database) cannot make its way into the database. 

xxviii 
 



• Some simple photo/video attachment option. 
• Having functionality to submit the hazard and its form to the PostgreSQL database so that it 

will show up as a new hazard on the map view. 

While many of these seem trivial and/or very obvious to include in such an application, it is of much 
importance that we map out exactly what is needed so that later down the road we don’t realise we 
have missed a critical functionality (which may be significantly harder to implement later rather than 
earlier in development). By having all of the listed functionalities working as expected, we will have a 
strong foundation of which we will hopefully have ease implementing some of the more difficult 
functionalities which will be coming later. 

I will now be covering over the core functionalities in more detail, focussing specifically on any points 
of interest and any surprises or difficulties I have encountered. I will also be including some of the 
more influential screens so that comparisons between old and new user interfaces may be easily 
made. 

Map View 
It is of vital importance that the map view is not only easy to understand and visually appealing, but 
also offers all the expected functionality of being to add and view different hazards. The base map 
view tab has maximised the size of the map itself so that users (especially using devices with smaller 
screens) can get the most information possible. The ArcGIS map offers all the normal functionality of 
a digital map (such as relocation and zooming) but it also allows for different hazards pulled from the 
PostgreSQL database to be treated as entities on the map. This not only allows them to move and 
zoom with the map, but it also offers other functionalities such as selecting a particular hazard and 
viewing its information or even editing it. As seen in the screenshot below, all of the currently active 
hazards in the designated area are shown, however at the present time the hazards offer very little 
information on their own other that where the hazard was reported. If a user wanted to see what a 
particular hazard’s ‘type’ was, they would have to open the hazards information dialogue. This will 
most definitely be improved in the future as I believe the hazards on the map view have the 
potential to offer a lot more information on their own. For example by changing the colour of the 
hazard symbol to represent different severity levels or by changing the hazard symbol itself to 
represent different hazard types. 

xxix 
 



 

Figure 15 - Map view version 1 

Information Dialogue 
While the map view does have some potential to give additional information such as severity or 
type, it is still necessary to be able to view additional information about a particular hazard. This is 
where the information dialogues come into play. Currently the information dialogues pull all 
attributes and attribute data of a particular hazard from the PostgreSQL database and display it in a 
very simple alert popup. As seen below this is unattractive and difficult to read. While it is just a filler 
for the meantime, it will definitely be changed to something more visually appealing and easier to 
understand. We will most likely be using a Bootstrap modal which follows our user interface theme 
and some filtering will be necessary (i.e. removing any unhelpful information). 

 

Figure 16 - Hazard dialogue version 1 

Unfortunately seeing as we have utilised lookup tables for hazard type and severity, the information 
shown about these two attributes is only a reference ID to another table. As such instead of showing 

xxx 
 



the hazard type as ‘mechanical’ it would instead simply display ‘2’. Again this is something that will 
need to be fixed before we are ready to push it out for the first round of user acceptance testing. 
Fortunately this shouldn’t be too difficult of a task, all that is needed is some SQL code which will 
create a new view which contains the appropriate information. 

Hazard Form 
As seen in the two screenshots above, we have implemented a simple ‘Add Hazard’ button to the 
map view. Once clicked a small prompt appears telling the user to “Click on the map to add a new 
hazard” and once the user has done so it changes the tab to the hazard form. The hazard form 
(shown below has some very simple inputs for all the necessary attributes. At the moment all of the 
attributes in the hazard table have inputs in the hazard form, however in the not too distant future 
we will be evaluating whether or not all of these fields are necessary. So far we plan on replacing the 
latitude and longitude fields with something that is more easily understandable to humans, such as a 
smaller version of the map view or perhaps a dropdown list of active project sites. By the time we 
roll out for the first stage of user acceptance testing we will also have a log in system so the 
“Reported By” field may become redundant. And finally, we intend on removing the basic 
photo/video attachment button with a function that allows a user to capture a photo/video within 
the application if using a device with a camera (rather than having to capture it outside the 
application, then save it, and then select it as an attachment). As it stands I don’t believe anyone will 
bother going through all the additional steps, and as such this usability problem needs to be solved. 

 

Figure 17 - Hazard form version 1 

At the moment the only necessary fields are the location (latitude and longitude), the hazard type, 
and the reported date. Once these and any of the optional fields are completed, the user may 
submit the form to the PostgreSQL database and it should be instantly available for all other Opus 
employees to view on the map view. 

xxxi 
 



5.2 User Interface Improvements 
After the successfully completion of the base application version 1, it is clear there is a lot of room 
for some user interface improvements. In the previous section I mentioned some of the more 
obvious changes that were required and in this section I will be highlighting how we went about 
solving those (and any other) user interface problems. 

The changes outlined below are in preparation for the first stage of user acceptance testing, which I 
will be covering in more detail in a later section. 

Map View 
Seeing as the map view is so influential to the entire application, it is of much importance to make it 
as visually appealing and usable as possible. The first change we made to the map view was 
differentiating different hazard types by using different representative symbols. While the symbols 
have been designed to be easily understandable, we have also included a legend to clarify any 
misunderstandings. 

The symbols themselves have been based on the hazard type lookup table in our database. While 
many have been designed, and many more will likely be designed in the future, the screenshot 
below shows the new map view with the new symbols and the legend side tab (which can be 
expanded and collapsed at any time). When compared with the map view version 1 screenshot, it is 
now clearly more readable and visually appealing. 

 

 

Figure 18 - Map view version 2 

Information Dialogue 
The old information dialogue was definitely in need of a clean-up of both what information was 
shown and how the information was shown. We have improved the old hazard information dialogue 
into a new hazard information modal. A decent amount of the unnecessary information has been 

xxxii 
 



removed and the design has been upgraded to a Bootstrap modal. This way the user interface can 
more easily align with our overall design. As seen in the screenshot below the new modal also shows 
a visualisation of any attached pictures which were submitted with the hazard. Again this is further 
increasing the richness of information available, while reducing any distracting or unnecessary 
factors. 

 

Figure 19 - Hazard Information version 2 

Hazard Form 
One of the more important improvements made was a suggestion from the business/health 
management team. They have stated that the old severity field does not align with their business 
safety standards. In particular, their safety scales are based on a combination of severity and 
likelihood of an event happening (the scale is shown in item 2 of the appendix). As seen in the 
screenshot below, we have included this suggestion by creating a two dimensional grid which 
combines a severity scale and a likelihood scale. 

The newly refactored hazard form also include the mini-map of the location where the hazard has 
been reported. This is significantly easier to understand than what we had before (which was simply 
numerical values for the latitude and longitude fields). As an added bonus the new mini-map only 
shows the symbol of the hazard which is currently being reported. This is especially useful if a user is 
reporting several hazards at the same site or reporting a hazard in an area which is already highly 
populated with hazards. By only showing the hazard that is being reported, the user can more easily 
identify whether or not the location selected on the map view is correct. 

xxxiii 
 



 

Figure 20 - Hazard Form version 2 

 

6. UAT Development Phase 
At this point in development we are now ready to put our current version of HazApp online so that 
the first stage of user acceptance testing may begin. In the following section I will make reference to 
some of the feedback we have received from the user acceptance test and how we have 
implemented the necessary changes. This section will primarily focus on the actual development 
done due to the feedback from the user acceptance testing, rather than focussing on the user 
acceptance testing itself (which will be covered more thoroughly in a later section). 

Some of the most immediate feedback received was about very small bugs such as incorrect 
geolocation tracking, and small features such as capturing photos within the application. In this 
development phase we will not only be making changes based off the user acceptance test 
feedback, but also several intended improvements as well. Most notably, the beginning of the data 
analysis. 

6.1 Correcting the Geolocation Zoom 
An interesting bug that became apparent after giving our application to the user acceptance test 
participants was that in some instances when the ‘auto-zoom to current location’ function activates, 
the GPS recognises that the user is somewhere where they aren’t. More specifically, this only 
happens when users use HazApp within the Opus network (i.e. desktop computers in Opus offices). 
After noticing this problem, recreating it consistently, and discussing it with some of the other 
software developers at Opus, we have come to the conclusion that it likely has something to do with 
the way in which the desktop computers at Opus are set up on the Opus backbone network. The 
network itself begins and ends in Christchurch which is the location it automatically zooms to in 

xxxiv 
 



these instances. While this seems like a relatively minute problem as users can still scroll to their 
desired location on the map (like any normal mapping interface), it is important for us to have the 
best usability for our application as possible, and as such we felt the need to correct it. 

Our first thought was to simply try another geolocator framework, however after testing the 
problem on a different framework (in this case GeoPlugin) we found we had the exact same 
problem. Being unable to solve the problem this way we decided to consider other workarounds. In 
the end we decided to simply include a local bookmarks feature in which users have stored locations 
which they can easily jump between. Following the consistent design principles, we have made the 
location bookmark feature in a way that it doesn’t unnecessarily distract the user or take up too 
much screen real estate, while still functioning as intended. 

 

Figure 21 - Map view with location bookmark feature 

The location bookmark list can easily be expanded/edited in the future to fit the needs of the users. 
However at this stage by default it only consists of the three major cities in New Zealand which Opus 
operates at. 

6.2 Mobile Specific Functionalities 
When uploading a photo(s) for a particular reported hazard while using a mobile phone or tablet, 
the user now has the option to either choose an image from their gallery/documents, or to capture a 
new photo within the application (as seen in the screenshot below). This is important as the vast 
majority of the hazard reporting will be done on project sites where the users may not have 
immediate access to a desktop computer or laptop. As such the hazard reporting via smartphone or 
tablet needs to be as easy as possible, which is why the seamless transition between the hazard 
reporting form and the photo capturing is so important. This greatly improves the user experience as 
now the user doesn’t have to exit the application to take a picture then return to the application to 
upload it. 

xxxv 
 



 

Figure 22 - Adding photo attachment via smartphone 

As seen above, when the user selects to add a photo attachment, several options appears. This 
should be consistent across all mobile browsers and all modern smartphones and tablets, so there 
shouldn’t be any limitations in that aspect. 

6.3 Data Analysis Using HighCharts 
While the majority of this project has been focussing on the hazard reporting side of HazApp, we 
have also included the beginnings of the data analysis side of the project. At the time being we have 
only been analysing the data in ways that seem most useful (for example the hazard type 
distribution chart shown below). This has been done by feeding the PostgreSQL data to the data 
analytics JavaScript framework Highcharts. This generates interactive chart visualisations which are 
significantly easier to comprehend than the data that they have been composed from alone. 

 

Figure 23 - Highcharts analysis of hazard type distribution 

xxxvi 
 



This infographic may be used to highlight areas which Opus needs to deploy further training regimes 
or better safety practices. For example if 50% of the reported hazards were of the “Personal Injury” 
hazard type, Opus may need to consider ways on how to combat this. 

 

Figure 24 - Number of hazards reported per day via line chart 

The analysis side of HazApp also allows a user to view the distribution of reported hazards on a daily 
basis. By highlighting any single data point the graph shows the exact date in question and how 
many hazards were reported for that particular type of hazard on that particular day. There is also a 
filtering functionality in which a user may select a type of hazard(s) to filter out of the graph which 
will reduce the cluttering. This tool is an incredibly useful way of visualising general trends within a 
given time period, for example there may be an increase in personal injuries over the Summer 
period. If this were the case Opus’ managers could be prompted into questioning why and 
potentially improving work practices to reduce the number of personal injuries occurring over this 
time. It may also help give insight into the effectiveness of Opus’ health and safety training sessions. 
For example it would be expected that if new health and safety regulations were to be introduced 
around how mechanical vehicles/devices are managed there would be a decrease in the number of 
mechanical hazards reported. 

While we have only captured what I consider the most important data analysis forms as of yet, we 
have also began planning on what other visualisations may be useful to both the average user as 
well as the managers. This may include: 

• As well as a line graph that shows how many hazards have been reported daily within a 
given time frame, showing how many of the reported hazards have been “solved” daily 
within a given time frame. 

• Dividing major areas up (for example Auckland CBD, Wellington CBD, and Christchurch CBD), 
so that analysis may be performed and compared on a regional basis. For example are there 
certain types of hazards that occur more regularly in Auckland CBD compared to 
Christchurch CDB. 

xxxvii 
 



• For each type of hazard, are there differences in the severity and/or likelihood as compared 
to other hazard types. This may again give insight on which types of hazards are more 
important to be taught on. 

• Are particular project sites reporting an unsafe number of hazards, and if so what can be 
done to reduce the number (for example is more training on safe business practices needed 
and/or is the site’s safety manager doing an adequate job). 

While there are many more features planned for the upcoming development phases, time has been 
a massive factor which has narrowed my scope to only what I have considered more important to 
getting my original plans of having a working application up and running. 

  

xxxviii 
 



Chapter 3 – Evaluation 
and Results 
7. Usability 
Seeing as HazApp is intended to be offered to all New Zealand Opus employees/contractors and 
eventually (assuming success) all Opus employees worldwide, it is of critical importance to have the 
application as user friendly as possible. As such I have decided to compare and criticise our current 
application against what I believe to be the most relevant aspects of Nielsen’s 10 Heuristics and 
Shneiderman’s 8 Golden Rules. From this I hope to find any missteps that may damage the overall 
usability of the application so that I may attempt to rectify them. 

After this I will also be evaluating some of the feedback received from the first stage of user 
acceptance testing. Similarly to the heuristic evaluations, I hope to find any areas that may be 
difficult to understand by the average user or any other glaring issues with the application. 

7.1 Nielsen’s Heuristics 
Nielsen’s Heuristics is an incredibly influential evaluation tool commonly used in areas of Human-
Computer Interaction. It specifically involves evaluators examining the interface and judging its 
compliance with recognized usability principles (the heuristics). The main goal of heuristic 
evaluations is to identify any problems associated with the design of user interfaces, and while it is a 
somewhat informal methods of usability inspection, it can still highlight any potential holes in our 
application’s usability. [22] [23] [24] 

In this section I will be focussing on the heuristics that I have found to be most relevant to our 
project, and evaluating how HazApp stands up to them. They are as follows: 

Match between system and real world 
To do this we have attempted to make Map view as similar to a real map as possible, this was 
relatively easy as ArcGIS (much like any modern mapping API) has been created in a way to be as 
recognisable and usable as possible. We have also included several features that would be found on 
a normal map as well, for example a legend to better understand the symbols. The form view has 
also been designed in a way to be as similar to a real hazard form as possible. It contains all the 
expected fields in order, and utilises radio buttons, dropdown lists, and check boxes to increase the 
overall usability. 

User control and freedom 
Having the user locked into a pre-set path can greatly reduce the user’s feel of control. As such we 
have developed HazApp in a way as to never lock the user in to making a decision. At any time can 

xxxix 
 



they may move between tabs without disrupting the system, and they may jump in and out of the 
form as they please without any repercussions. 

Consistency and standards 
We have utilised bootstrap and CSS to keep a consistent look over the entire application and we 
have used consistent wording in the form (for example “Controls” for how the hazard has been 
mitigated) so that at no point different words, situations, or actions mean the same thing. Also the 
form view is based upon Opus’ health and safety standards, so any users familiar with such 
standards will have no amount of confusion. 

Error prevention 
As HazApp is not an incredibly complex system, error prevention was not that difficult to develop 
for. Essentially the only area which errors may arrive is the form view. To combat any potential 
spawns of errors we have primarily used input validation (including image validation/filtering) thus 
eliminating error-prone conditions. 

Recognition rather than recall 
We have attempted to minimise the user’s memory load by making object, actions, and options as 
visible as possible. We have used very clear functions on the map view (for example popup legend 
and create new hazard function are both very clear and prompts for hazard creation), and the form 
tab has clear and concise field input names with hints where necessary. 

Aesthetics and minimalistic design 
We have kept the design as consistent, simple and easy to understand as possible, this has been 
done in a way to reduce the cognitive load on the user without compromising on the fundamental 
functionality. Along with this the hazard information modals only contain information which we 
consider most relevant and useful. 

Help users recognize, diagnose, and recover from errors 
When submitting a hazard form the form validation will check to see if all of the required fields have 
been filled correctly. If any haven’t the user will be told so and the particular input field(s) that have 
either been missed or entered incorrectly are highlighted to let the user know what area they need 
to fix. 

7.2 Shneiderman’s Golden Rules 
Similar to Nielsen’s Heuristics, Shneiderman’s Golden Rules are intended to help you create a well-
designed user interface and thereby improve the usability of the system. [25] 

Following on from the Nielsen’s Heuristics, this section will highlight the most important aspects of 
Shneiderman’s 8 Golden Rules (which have not already been covered by in the section above). They 
are as follows: 

Offer informative feedback 
All actions have some form of system feedback. While most are subtle some cases require more 
detailed feedback. For example when submitting a hazard correctly, or when submitting a hazard 
with an incorrect image (due to incorrect file typing or invalid path), the data will still go through if 

xl 
 



submitted, however the user will receive an alert that the form has been completed and submitted 
but the image has not been saved (as seen in the screenshot snippets below). 

 

Figure 25 - Information popup for correctly submitted form 

 

Figure 26 - Information popup for submitting an incorrect file to the database 

Permit easy reversal of actions 
At any time before submitting the user can edit and of the form fields or cancel the entire form 
submission (for example if the location selected is incorrect), and if necessary the user may edit 
and/or delete their hazard form submission through the management portal. 

Support internal locus of control 
HazApp makes the users initiators rather than responders by having all functions requiring a user 
action before they do anything. For example if a user wishes to view the information of a particular 
hazard they will have to select that hazard on the map, or if they want to create a new hazard report 
they have to select to do so. At no point will the application commence any of its functions without 
the user’s input. The only changes that will be made within HazApp without a particular user making 
an action, is when a different user has submitted a hazard which will make the hazard appear on all 
the other users’ maps. 

Reduce short-term memory load 
The only short-term memory load required at any time should be of a single hazard that a user will 
be submitting at the time. As the reporting is done on a single case basis there is no need to 
remember past reports, and if any information is needed about past reports it is available through 
the information dialogue by selecting the hazard of interest on the map view. We have also avoided 
any conditions with multiple page displays, and we have minimised window-motion frequency 
where possible. 

7.3 User Acceptance Test 
The first user acceptance test is in the process of being completed with a small team (approximately 
5 people) of Opus’ Geotech Site Managers in the Auckland region. These users have been selected as 
they perfectly fit into the demographic of users we are trying to target (i.e. site managers that spend 
time reviewing business practices on-site). While we have developed the hazard reporting side of 
HazApp to function on all screen sizes from smartphones to desktop computers, the majority of the 
time the participants in our first user acceptance test will be reporting on-site hazards using tablets. 

It is of great importance that we work closely with some real users and that feedback is received and 
discussed early and often. At this stage it is still relatively easy to improve, remove or add new user 
interfaces or features. Positive user experience is of critical importance for overall acceptance and 
ultimately the success of the application. If the application is difficult to understand and/or a hassle 
to use, it simply will not be used. Fortunately we do have users at our disposal who are willing to 

xli 
 



help us test our application as at this stage success is not nearly as important as learning from the 
users’ feedback and addressing the issues accordingly. 

From the first round of feedback we have received the following feedback on additional 
functionalities which would greatly benefit the Geotech team: 

• Integration with ArcGIS - If the hazards added via the app could reference points 
and/or projects in existing ArcGIS maps, Geotech has suggested this would save time and be 
a great advantage for them.  
This essentially means they would like a function which would allow the information from 
the HazApp map to be added with their ArcGIS mapping applications (which they use on a 
daily basis). This means that all of information the Geotech team needs would be in one 
single application (rather than one application for hazards and one application for everything 
else. This could be as simple as adding a link/reference to the hazard however for the 
meantime it is undecided on how it will be implemented.  

• Photo exports - The ability to bulk export images for a project area, for use in reports and 
team or project summaries. 

• Hazard statistics/summaries for a project area - This is similar to an already planned 
functionality and will be easy to adjust this to defined areas. Essentially it will require some 
sort of pdf generator which could also include photo exports (as mentioned above). 

While the majority of these feedback points were already planned for in the future it is great to see 
that the direction in which we are heading is aligning well with not just the business and health & 
safety managers (based off the feedback received at the Executive Leadership Team demonstration), 
but also the people who will eventually be making use of our application. 

From the first round of feedback it has also been encouraging that the users haven’t raised any 
complaints with the user interface or flow of the application. I would like to believe that this is due 
to the fact they are happy with how the application currently looks and feels. However for the next 
round of feedback we will be prompting the users to focus on and discuss the overall user interface 
and flow of HazApp, just to see if there are any easy to fix aspects which may be damaging the 
general user experience. 

8. Security 
While HazApp is still in the current development stage and is only available to a few specially 
selected individuals within Opus, security seems somewhat unnecessary. However as HazApp is 
eventually deployed to a wider audience it will become more and more important to ensure that any 
confidential data is safe so that the Opus and any individuals employed by Opus are never in a 
position to be harmed. As such we have focussed on both keeping unwanted users out via a secure 
login system, and keeping authorised users from damaging the system/data via input validation and 
SQL injection counter measures. 

8.1 Database Security 
Making sure no malformed or malicious code is inserted into the database is very important to keep 
the confidentiality of data at a high, as well as allowing the application to run smoothly and as 
intended without any crashes/errors. For the most part this has been done within the form fields’ 

xlii 
 



validation parameters. As the form fields are the only area which adds data directly back into the 
database we have put strict limitations on what may be input for the form fields using Knockout 
input validation (as highlighted earlier in ‘First Prototype’ section), however to combat any potential 
form of SQL injection we have also used prepared statements which essentially takes the characters 
input from the form field(s) and places them directly in the database as text. This means that even if 
a user bypasses the input validation, their input will never affect the INSERT statement in any way. 

8.2 User Login 
Seeing as the hazard reporting side of HazApp will be available via internet browser it is of much 
importance to have some form of user login/verification system to limit users to only intended users. 
This will not only protect the potentially confidential information about Opus’ business operations, 
but also it will negate the possibility of unwanted users “griefing” the system by logging incorrect 
and misleading information that may affect real users (for example someone reporting there has 
been a chemical explosion in a certain area when in fact everything is fine could halt work in said 
area until the confusion was cleared up). 

To protect the system from unwanted users we have implemented an htaccess login system which 
prevents users from accessing any part of the application without a verified username and 
password. If a correct username and password is entered, the user will have full access to HazApp’s 
reporting features. However if an incorrect username and/or password is entered the authentication 
prompt will remain and the application will not be loaded. 

 

Figure 27 - htaccess login system prompt 

When attempting to access HazApp via browser the prompt above appears before loading any of the 
application, as such no information is obtainable without a correct username and password. This 
most importantly applies to the page’s html code. As seen in the two screenshots below, no 
information is retrievable about the page before the login has been successfully completed, but after 
the login a lot of information about the structure and design is obtainable. While this information is 
likely safe to be seen by non-approved users, it is still important to keep any information that could 
potentially damage Opus’ business confidential where possible  (for example if a competitor wanted 

xliii 
 



to copy and create a similar application for themselves they wouldn’t get any useful information 
without a login). 

 

Figure 28 -Empty html code before login verification 

 

Figure 29 - html code after login verification 

9. Performance 
As maximising positive user experience is a priority for the success of HazApp, having a good 
performance for the web application is very important. Research has shown that having a web page 
take too long to load can juristically hurt the overall usability of an application [26]. As such I have 
reviewed our current application using YSlow [27], a tool which analyses and grades a web page 
based on a set of rules highlighting important areas in regards to performance. 

9.1 YSlow Grading 
As seen in the screenshot below HazApp (hosted at http://apps.opus.co.nz/HazApp) has a rating of 
90 out of 100 (A-Grade). The only area which is not at the A-Grade is the section of “Making fewer 
HTTP requests”. The reason this section has not been given an A-Grade is because our application 
has several external JavaScript scripts, stylesheets and background images. 

xliv 
 

http://apps.opus.co.nz/HazApp


 

Figure 30 - YSlow Performance Review 

YSlow’s suggestion is to combine the external JavaScript scripts together and the external 
stylesheets together, however this conflicts with one of my original goals of having the application 
up to Opus’ software development standards. We have used Code Igniter to structure the entire 
application in a way that related code is grouped together, but separated from other areas. For 
example the JavaScript code for the ArcGIS mapping is separated from the JavaScript code for 
Knockout JS. If all the JavaScript code were to be combined into a single script it would be so large 
and would contain so much information that it would be significantly more difficult to understand 
and it would take a lot of time to find any single area you were interested in. As such I have decided 
to stick with the structure that has been implemented. Although it may give a minor hit to the 
performance of the web application, it is a necessary sacrifice that should increase the overall 
longevity of the application. 

Other than the section of “Maker fewer HTTP requests” HazApp has been given A’s all round. Overall 
I am very pleased with the grading and I feel as though in its current state its performance is at a 
high enough standard to be used without damaging the user experience. 

9.2 YSlow Cache Statistics 
The screenshot below shows the statistics page of HazApp, unsurprisingly for both the empty cache 
and the primed cache JavaScript code takes up the majority. I believe that this is the case as we have 
used many different JavaScript APIs/libraries to get the functionality needed to having HazApp 
working as intended. 

xlv 
 



 

Figure 31 - YSlow Statistics Overview 

  

xlvi 
 



Chapter 4 – Conclusion 
 

10. Completed Goals 
To begin with HazApp was only a simple idea with infinite possibilities. Its one goal was to be an 
innovative online hazard reporting system which would eliminate the hassle of current paper based 
hazard reporting systems. Before any development had started I worked closely with the team at 
Opus to plan out how we would solve this problem. After the long and thorough planning phase (in 
which we decided on what HazApp would eventually become and how it would go about doing so) I 
made some personal goals which I considered realistically completable within the timeframe I was 
given for this project. The overarching goals that I had decided on at the start of our development 
phase were as follows: 

1. Create the hazard reporting side of the application and get it running on-line so that it may 
be used by real Opus employees - We have already deployed a stable release of HazApp’s 
reporting side online at https://apps.opus.co.nz/hazapp. Although only a small number of 
employees are currently using the system (those participating in the User Acceptance 
Testing), it should be very easy to increase the numbers of available users. This is great as 
having more users that are using HazApp will increase the numbers of hazards that are 
reported and it will increase the awareness of those hazards. 
 

2. Create the management portal so that the real reported data could be analysed in some way 
- While this is only in a basic state at the moment, the management portal still offers what I 
consider very useful information on the reported hazards. As more people begin to use 
HazApp the information reported will carry more and more weight, to the extent that real 
business changes may be based upon the findings. There is a lot of room to expand and 
many possibilities for further statistical analysis. 
 

3. Complete some form of usability study on the working application - While I did not carry out 
a full blown usability study, it was still very important to see how users who had used Opus’ 
paper based hazard reporting system felt about the application we have created to combat 
it. This was done through a User Acceptance Test completed by a small group of Geotech 
Site Managers. Their input was very interesting and very useful in regards to making 
improvements of our current system. 
 

4. Have all of my development code in a working state in which is up to Opus’ software 
development standards. Meaning that any members of the software development team 
could continue further development and maintenance on the HazApp after the completion 
of my project – This took a lot of work and required me to learn a completely new way of 
structuring code. However it was very important for me to do this well and I am happy to say 

xlvii 
 

https://apps.opus.co.nz/hazapp


that two software developers at Opus will be continuing work on HazApp after my 
completion. 

Each one of these points had challenges within itself but I am very happy to say that all four of these 
goals have been completed to a standard I am very proud of. 

11. Lessons Learned 
Throughout this whole process I have come across many challenges and I have also learnt a lot. I 
believe that the knowledge and experience gained through this project will definitely help me in the 
future as I commence working as a software developer. The most significant lessons I have learned 
from this project are: 

• Using frameworks and design techniques that real software professionals use in the real 
world - Whether or not I will be developing HTML based web applications and/or using any 
of the frameworks I have used for this project in my career is unknown, however I believe 
that regardless it was a very useful experience. Even if I never use any of these languages or 
API’s again the mere exercise of learning new languages and frameworks is useful in itself. 
As the IT industry is so fast moving it is a real skill to be able to adapt. One of the most vital 
ways to keep up is to be able to learn. 
 

• How to work with a real team of not only software developers, but also business and health 
& safety managers - The interactions between the different groups made me realise that to 
get the information you want you must be ready to cater communications for each separate 
group. Communication is a vitally important aspect of working in the real world, and 
understanding how to communicate with different technical skill groups in a company is a 
very useful skill. 
 

• Getting a small taste of agile software development and what software development will be 
like in a professional setting – Agile software development is common among many IT 
industry companies. After getting to work in a semi-agile software development 
environment I can see why it is so popular. Being able to quickly change course to best 
improve an application seems to me like a very smart and efficient way of developing 
systems. There is no doubt that I will be working in some form of an agile team at some 
point in my software development career. 
 

• Getting to work closely with a small team of real users undertaking a user acceptance test - 
Being able to properly understand your user base is also incredibly important, and whether 
or not I will be conducting any forms of usability studies as a software developer, it is always 
great to have the end user in mind when developing any system. At the end of the day, if an 
application has poor usability or is difficult to understand it will simply not be used. This is 
why usability is so important in this line of work. 

xlviii 
 



12. Future Work 
While I am very pleased with the overall progress of the project and what I have learned from it, it 
was always inevitable that due to the scale and freedom of the project there would always be more 
that could be done. However with that in mind, Taylor Carnell and Mitchel Bennett at Opus will be 
fully taking over the project after my completion and we have discussed their plans on further 
development in the coming months. 

First and foremost, they will be focussing on filling out the management portal side of HazApp. This 
will primarily be through the addition of more statistical analysis functionalities (several of which 
have been mentioned in the ‘Data Analysis Using HighCharts’ section). All of these will be used to 
highlight any areas of Opus’ business and health & safety practices which may be below standards. 
Opus is working towards a safety objective of having a “zero harm workplace” and the management 
portal in conjunction with the hazard reporting portal of HazApp will hopefully greatly help the 
cause. 

Within the management portal there will also be functionality for managers to work on data Quality 
Assurance/Quality Control (QA/QC). Which means that managers will be able to observe what other 
Opus employees have submitted to evaluate whether it is appropriate and/or whether it is how the 
application is intended to be used. Similarly, this may be used as a basis to improve health & safety 
trainings. 

There are also several minor improvements planned for the hazard reporting side of the application. 
These will need to be completed before expansions to a larger user base. Some of the more 
important improvements are: 

• Offline support for the application, which will be very useful for any employees wishing to 
report hazards while working on a project site which may have little to no internet access 
capabilities. 

• Integrating HazApp with mapping systems regularly used by site managers, which will mean 
that they will only have to have one application for all of their managerial needs. 

• Further expansion of the hazard type list within the database to match the required health 
and safety standards. 

• Any additional user interface improvements that may arise through further User Acceptance 
Testing. 

• Any additional functionalities suggested by users and/or managers which are deemed as 
useful. 

They will also be continuing to work with small user groups to improve things such as minor bugs 
and user interfaces in preparation for a notional rollout. When HazApp is at a completed state that 
the business and health & safety managers are happy with, the user base will be expanded to reach 
the major cities within New Zealand the eventually all of New Zealand. Assuming the success of 
nationwide rollout, HazApp will be considered to be expanded to all Opus bases globally. If this does 
go ahead several more refactors may need to be taken into consideration. For example language 
boundaries.  

xlix 
 



13. Concluding Thoughts 
As stated earlier I am very happy with what I have learned and how I have gone about completing 
this project. I genuinely believe that the skills and experiences I have gained through this project will 
be greatly beneficial as I begin my career as a software developer. I really hope that HazApp will be 
completed and fully adopted by Opus so that I may know I have made a positive impact for my work 
over the year. Finally, as my project comes to a close I would again like to thank all those that helped 
me along the way, the entire experience was truly enjoyable.  

l 
 



Appendix 
 
Item 1 - Simple Hazard Reporting Template 

Area/Locality  of hazard      Date   

 

 

Name…………………………………………. 

  

       (Name of person preparing report) 

 

DESCRIPTION OF HAZARD (Include area and task involved, any equipment, tools, people involved. 
Use sketches if necessary.) 

 

 

 

 

 

POSSIBLE REMEDIES (List any suggestions you may have for reducing or eliminating the problem, 
e.g. re-design mechanical devices, procedures, training, maintenance work, etc.) 

 

 

 

 

 

li 
 



 

To be submitted to the Manager 
 Signed…………….…………....……….. 

 

ACTION TAKEN 

 

 

 

 

 

Date……….…………………………. 

Manager….………………………………. 

CONTROL IMPLEMENTED & EVALUTATED 

 

 

 

 

 

 

Date…………………………………. 

Manager…………………………………. 

 

 
 

lii 
 



Item 2 – Site Hazard ID Risk Assessment Form

liii 
 



  

liv 
 



Bibliography 
 

[1]  Opus International Consultants Limited, “HazApp: The Opus Geospatial Hazard Management 
System,” Auckland, 2015. 

[2]  Cloudsource Limited, “Health and Safety Mobils Apps | ThunderMaps,” 2015. [Online]. 
Available: https://learn.thundermaps.com/. [Accessed 20 April 2015]. 

[3]  R. Ghatol and Y. Patel, Beginning PhoneGap, New York: Apress Media, 2012.  

[4]  C. J. Date and H. Darwen, A Guide To SQL Standard (Vol. 3), Reading: Addison-Wesley, 1997.  

[5]  R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD Record, vol. 39, no. 4, pp. 12-27, 
May 2015.  

[6]  J. Farrar, KnockoutJS Web Development, Packt Publishing, 2015.  

[7]  P. B. Darwin and P. Kozlowski, AngularJS web application development, Birmingham: Packt 
Publications, 2013.  

[8]  A. Osmani, Developing Backbone js Applications, O'Reilly Media, Inc., 2013.  

[9]  B. LeRoux, “Lawnchair simple json storage,” 10 March 2015. [Online]. Available: 
http://brian.io/lawnchair/. [Accessed 14 May 2015]. 

[10]  Mozilla, “Local Forage,” April 2015. [Online]. Available: https://mozilla.github.io/localForage/. 
[Accessed 14 May 2015]. 

[11]  M. David, Developing websites with JQuery mobile, Taylor & Francis, 2015.  

[12]  A. Shevchenko, R. Van Baalen, K. D. Moore, A. Levicki and D. Netto, Developing an Ionic Edge: 
HTML5 Cross-Platform Hybrid Apps, Bleeding Edge Press, 2015.  

[13]  M. Stevenson, Bootstrap: The ultimate beginners guide to Bootstrap 3.0, USA: CreateSpace 
Independent Publishing Platform, 2014.  

[14]  Less, “Less - Getting started,” 2015. [Online]. Available: http://lesscss.org/. [Accessed 26 May 
2015]. 

[15]  H. Catlin and M. L. Catlin, Pragmatic Guide to Sass, Pragmatic Bookshelf, 2011.  

[16]  K. Johnston, J. M. Ver Hoef, K. Krivoruchko and N. Lucas, Usin ArcGIS geostatistical analyst (Vol. 
380), Redlands: Esri, 2001.  

[17]  B. Momjian, PostgreSQL: introduction and concepts (Vol. 192), New York: Addison-Wesley, 
2001.  

lv 
 



[18]  JGraph Limited, “draw.io,” 2015. [Online]. Available: https://www.draw.io/. [Accessed 24 May 
2015]. 

[19]  pgAdmin, “pgAdmin - PostgreSQL Tools,” 12 December 2014. [Online]. Available: 
http://www.pgadmin.org/. [Accessed 28 May 2015]. 

[20]  M. Hills, Klint P and J. Vinju, “An empirical study of PHP feature usage: a static analysis 
perspective,” ISSTA 2013 Proceedings of the 2013 International Symposium on Software Testing 
and Analysis. ACM, New York, NY, USA., pp. 325-335, 14 May 2015.  

[21]  D. D. Dvorski, Installing, configuring, and developing with Xampp, Skills Canada, 2007.  

[22]  R. Molich and J. Nielsen, “Improving a human-computer dialogue,” Communications of the ACM 
33, pp. 338-348, 3 March 1990.  

[23]  R. Molich and J. Nielsen, “Heuristic evaluation of user interfaces,” Proc. ACM CHI'90 Conf. 
Seattle, WA, pp. 249-256, 5 April 1990.  

[24]  J. Nielsen, “Enhancing the explanatory power of usability heuristics,” Proc. ACM CHI'94 
Conference Boston, MA, pp. 152-158, 28 April 1994.  

[25]  B. Shneiderman and C. Plaisant, “Designing the User Interface: Strategies for Effective Human-
Computer Interaction: Fifth Edition,” Addison-Wesley Publ. Co., Reading, MA, p. 606, 2010.  

[26]  F. F.-H. Nah, “A study on tolerable waiting time: how long are Web users willing to wait?,” 
Behaviour & Information Technology, vol. III, no. 23, pp. 153-163, 2004.  

[27]  “YSlow,” October 2015. [Online]. Available: http://yslow.org. [Accessed 20 October 2015]. 

 

 

 

lvi 
 


	Abstract
	Figures
	Tables
	Acknowledgements
	1. Project Introduction
	1.1 The Company
	1.2 The Problem
	1.3 Project Goals
	1.4 Related Work
	ThunderMaps


	2. Technologies
	2.1 Programming Language
	Native Mobile App
	Native Desktop App
	Web App
	PhoneGap
	Decision

	2.2 Database Management Language
	SQL
	NoSQL

	2.3 JavaScript Frameworks
	Knockout
	Angular
	Backbone
	Lawnchair
	Local Forage

	2.4 Mobile Web App Frameworks
	JQuery Mobile
	Ionic
	Bootstrap

	2.5 Stylesheet Languages
	Less
	Sass

	2.6 Mapping API
	ArcGIS


	3. Planning and Design
	3.1 Database Design
	3.2 User Interface Design
	3.3 Progress Plan

	4. First Prototype
	4.1 Accessing Database using PHP
	4.2 Creating the Mobile Side Using HTML5
	ArcGIS Mapping
	HTML5 Form Creation
	Hazard Type Input
	Latitude and Longitude Fields
	Calendar Inputs



	5. Second Development Phase
	5.1 Base Application
	Map View
	Information Dialogue
	Hazard Form

	5.2 User Interface Improvements
	Map View
	Information Dialogue
	Hazard Form


	6. UAT Development Phase
	6.1 Correcting the Geolocation Zoom
	6.2 Mobile Specific Functionalities
	6.3 Data Analysis Using HighCharts

	7. Usability
	7.1 Nielsen’s Heuristics
	Match between system and real world
	User control and freedom
	Consistency and standards
	Error prevention
	Recognition rather than recall
	Aesthetics and minimalistic design
	Help users recognize, diagnose, and recover from errors

	7.2 Shneiderman’s Golden Rules
	Offer informative feedback
	Permit easy reversal of actions
	Support internal locus of control
	Reduce short-term memory load

	7.3 User Acceptance Test

	8. Security
	8.1 Database Security
	8.2 User Login

	9. Performance
	9.1 YSlow Grading
	9.2 YSlow Cache Statistics

	10. Completed Goals
	11. Lessons Learned
	12. Future Work
	13. Concluding Thoughts
	Bibliography

